
Alan Tang1

Siva Kesava Reddy Kakarla1 Ryan Beckett2 Ennan Zhai3

Matt Brown4 Todd Millstein1,4 Yuval Tamir1 George Varghese1

1University of California, Los Angeles 2Microsoft Research

3Alibaba Group 4Intentionet

Network Misconfigurations Cause Outages

Router Configuration is Hard

Multiple Protocols

• BGP, OSPF, etc.

Lots of configurable properties

• Link costs, IP addresses, etc.

Various filters for header fields

• ACLs, prefix lists, community lists, etc.

interface GigabitEthernet2/0

ip address 2.12.12.1 255.255.255.0

!

router ospf 1

router-id 2.1.1.1

redistribute connected subnets

network 2.0.0.0 0.255.255.255 area 1

!

router bgp 2

bgp router-id 2.1.1.1

neighbor as1 peer-group

neighbor as1 remote-as 1

neighbor 10.12.11.1 peer-group as1

!

address-family ipv4

network 1.0.0.0 mask 0.255.255.255

neighbor as1 send-community

neighbor as1 route-map POL in

neighbor 10.12.11.1 activate

exit-address-family

Network Configuration is Hard

Multiple routers

• border, core, etc.

Different vendor
formats

• Cisco, Juniper, etc.

Need to be
updated

protocols {

bgp {

traceoptions {

file nsr_bgp_trace_file;

flag nsr-synchronization detail;

}

log-updown;

damping;

group GROUP1 {

type internal;

local-address 2.1.1.1;

family inet {

unicast;

}

import POL;

local-as 2;

neighbor 10.12.11.1 {

description R1;

}

}

}

ospf {

area 0.0.0.1 {

interface ge-1/0/0;

interface ge-2/0/0;

}

}

}

interface GigabitEthernet2/0

ip address 2.12.12.1 255.255.255.0

!

router ospf 1

router-id 2.1.1.1

redistribute connected subnets

network 2.0.0.0 0.255.255.255 area 1

!

router bgp 2

bgp router-id 2.1.1.1

neighbor as1 peer-group

neighbor as1 remote-as 1

neighbor 10.12.11.1 peer-group as1

!

address-family ipv4

network 1.0.0.0 mask 0.255.255.255

neighbor as1 send-community

neighbor as1 route-map POL in

neighbor 10.12.11.1 activate

exit-address-family

Existing Tools Provide Single Counterexample

Existing tools for control plane can model and verify network behavior

• e.g. Minesweeper [Beckett et al. 2017]

Configurations

Model
(SMT Formula)

Query

Check: node A
cannot reach

node B

Verified!

Not Verified +
Counterexample

Counterexample:
• Single packet header

Problem

What is causing the error?

• BGP?

• OSPF?

• Static routes?

• ACL?

• Bug in the modeling?

What is the scope of the error?

• One error or many errors?

• Few IP addresses or many?

• Real error or exceptional case?

What a single counterexample cannot tell you:

Our Goal: Error Localization

1. Find all errors

2. Find the part of the configuration causing the errors

3. Find the input sets affected

Our Setting: Equivalence of Router Pair

Upgrading / updating configuration

• Rewrite policy for different router

• Small update without major change

Backups

• Intended to have same behavior

• May contain minor differences

Task: Check that a pair of routers are equivalent / Find their differences

Old New R1 R2

=

Campion

Finds the difference between two router configurations using modular
comparisons

• Finds all differences

• Text localization: configuration block or lines causing a difference

• Header localization: input headers are affected by the difference

Found bugs in major cloud datacenter and large university network
configurations:

• Errors in datacenter routers could have caused service disruption

• Found unintentional policy in university core and border routers

• Operators said was “highly unlikely” to find by manual inspection

Example
Cisco Excerpt

ip prefix-list NETS permit 10.9.0.0/16 le 32

ip prefix-list NETS permit 10.100.0.0/16 le 32

!

ip community-list standard COMM permit 10:10

ip community-list standard COMM permit 10:11

!

route-map POL deny 10

match ip address NETS

route-map POL deny 20

match community COMM

route-map POL permit 30

set local-preference 30

Juniper Excerpt

prefix-list NETS {

10.9.0.0/16;

10.100.0.0/16;

}

community COMM members [10:10 10:11];

policy-statement POL {

term rule1 {

from prefix-list NETS;

then reject;

}

term rule2 {

from community COMM;

then reject;

}

term rule3 {

then {

local-preference 30;

accept;

}

}

}

Routing Policy

Communities

Prefixes

Output Comparison

Minesweeper:
(after getting relevant model variables)

Campion:

Example Difference
Cisco Excerpt

ip prefix-list NETS permit 10.9.0.0/16 le 32

ip prefix-list NETS permit 10.100.0.0/16 le 32

!

ip community-list standard COMM permit 10:10

ip community-list standard COMM permit 10:11

!

route-map POL deny 10

match ip address NETS

route-map POL deny 20

match community COMM

route-map POL permit 30

set local-preference 30

Juniper Excerpt

prefix-list NETS {

10.9.0.0/16;

10.100.0.0/16;

}

community COMM members [10:10 10:11];

policy-statement POL {

term rule1 {

from prefix-list NETS;

then reject;

}

term rule2 {

from community COMM;

then reject;

}

term rule3 {

then {

local-preference 30;

accept;

}

}

}
Difference 1: match /16 or longer vs. /16 exact
Difference 2: match EITHER community vs. BOTH communities

Key Idea: Modularity

Perform checks on individual components to take
advantage of config structure

1. Immediately localizes to component

2. Does not require modeling protocols

3. Simplifies checks for individual components

4. Allows tracing back to lines and getting multiple
results

Config

Component 1

Component 2

Component 3

Component 4

Config 1 Config 2

Overview

1. Match corresponding components:
➢Use heuristics for matching edges

2. Compare corresponding components
➢Use structure of each component

3. Provide the text and headers (where
applicable)

➢Use info from configuration

Component 1 Component 1

Component 2 Component 3

Component 3
Component 2

Component 4
Component

4

✓

✓

X

X

Modular vs. Monolithic

Modular (Campion) Monolithic (Minesweeper)

Component 1 Component 1

Component 2 Component 3

Component 3
Component 2

Component 4
Component

4

Model of Config 1
w/protocols

Model of Config 2
w/protocols

Packet
Route from
Neighbor 1

Route from
Neighbor 2

…

+

Forwarding
State

Forwarding
State=

?

?

?

?

?

Avoids Modeling Protocols
Does NOT need to model or simulate protocols!

• Protocols are fixed

• Only needs to check configurable properties for all inputs

For BGP:

Route Advertisement:
• Prefix
• Communities
• Local Pref.
• Etc.

Inputs Configurable Fixed Processes

BGP decisionRoute maps
• Filter and modify inputs

Route reflector clients

Send-communities?

Final route selection

Packet forwarding

Route redistribution policy

Etc.

Simplifying Checks

Behavioral / Semantic Comparison

ACLs and route maps configure
function on packet headers

→ Need to model behavior

Structural Comparison

Most other component behaviors can
only be expressed in a one way

→Can be compared structurally

interface ethernet ½

ip ospf cost 65

interface fe-1/0/1.0 {

metric 65;

}

Comparing Filter Behavior
Inputs: [NETS]

Action: Reject

Text: route-map POL deny 10

match ip address NETS

Inputs: ¬[NETS] ∩ [COMM]

Action: Reject

Text: route-map POL deny 20

match community COMM

Inputs: ¬[NETS] ∩ ¬[COMM]

Action: Permit, local-pref = 30

Text: route-map POL permit 30

set local-preference 30

Inputs: [NETS2]

Action: Reject

Text: route-map POL2 deny 10

match ip address NETS2

Inputs: ¬[NETS2]

Action: Permit, local-pref = 30

Text: route-map POL2 permit 30

set local-preference 30

1. Associate clauses with
input set, action, and text

2. Compare clauses
with different actions

3. Return cases where
intersections are non-empty

R1 rejects but R2 permits

Routes: ¬[NETS] ∩ [COMM] ∩ ¬[NETS2]

Text 1: route-map POL deny 20

match community COMM

Text 2: route-map POL2 permit 30

set local-preference 30

Data Center Results

• Ran Campion on configurations from a
major cloud datacenter network

• Tried on three scenarios
• Scenario 1: Backup routers

• Scenario 2: Router replacement to
different vendor

• Scenario 3: Gateway ACLs

• They ran Campion and interpreted
results without feedback from us

• Some differences could have caused
major issues if left undetected

• No false positives

University Results

• Core router and border router backup pairs
• Different vendors

• We ran and interpreted results without
knowing detailed intent
• Confirmed errors with operators

• Found differences in multiple policies
• Some present for nearly three years

• Operators claimed they were unlikely to
discover by manually inspecting configs

• Some false positives
• Intentional static route differences

• One difference that should not affect behavior

Conclusion

• Campion can find and localize differences between two configurations
• Gets components and lines

• Gets input space

• Use modularity:
• Reflects structure of the configuration

• Avoid modeling protocols

• Simplifies checks

• Fine-grained localization

• We found many differences in data center and university network configurations

