CAMPION: DEBUGGING ROUTER CONFIGURATION DIFFERENCES

Alan Tang¹

Siva Kesava Reddy Kakarla¹ Ryan Beckett² Ennan Zhai³

Matt Brown⁴ Todd Millstein^{1,4}

Yuval Tamir¹ George Varghese¹

¹University of California, Los Angeles ²Microsoft Research

³Alibaba Group ⁴Intentionet

Network Misconfigurations Cause Outages

Google accidentally broke the internet throughout Japan

A mistake led to internet outages for about half of the country.

What was wrong with United's router?

Airline isn't saying, but ideas abound

BGP errors are to blame for Monday's Twitter outage, not DDoS attacks

No, your toaster didn't kill Twitter, an engineer did

Xbox Live outage caused by network configuration problem

BY TODD BISHOP on April 15, 2013 at 9:27 am

Router Configuration is Hard

Multiple Protocols

• BGP, OSPF, etc.

Lots of configurable properties

• Link costs, IP addresses, etc.

Various filters for header fields

• ACLs, prefix lists, community lists, etc.

```
interface GigabitEthernet2/0
 ip address 2.12.12.1 255.255.255.0
router ospf 1
 router-id 2.1.1.1
 redistribute connected subnets
network 2.0.0.0 0.255.255.255 area 1
router bqp 2
 bgp router-id 2.1.1.1
neighbor as1 peer-group
 neighbor as1 remote-as 1
 neighbor 10.12.11.1 peer-group as1
 address-family ipv4
  network 1.0.0.0 mask 0.255.255.255
 neighbor as1 send-community
 neighbor as1 route-map POL in
 neighbor 10.12.11.1 activate
 exit-address-family
```

Network Configuration is Hard

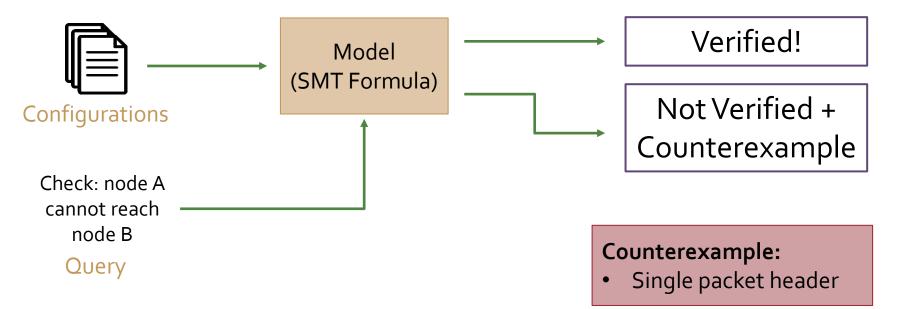
Multiple routers

• border, core, etc.

```
Different vendor
formats
```

• Cisco, Juniper, etc.

Need to be updated


```
protocols -
interface GigabitEthernet2/0
                                               bqp {
 ip address 2.12.12.1 255.255.255.0
router ospf 1
 router-id 2.1.1.1
 redistribute connected subnets
network 2.0.0.0 0.255.255.255 area 1
router bqp 2
bgp router-id 2.1.1.1
 neighbor as1 peer-group
 neighbor as1 remote-as 1
 neighbor 10.12.11.1 peer-group as1
 address-family ipv4
 network 1.0.0.0 mask 0.255.255.255
 neighbor as1 send-community
 neighbor as1 route-map POL in
 neighbor 10.12.11.1 activate
 exit-address-family
```

traceoptions { file nsr bgp trace file; flag nsr-synchronization detail; log-updown; damping; group GROUP1 { type internal; local-address 2.1.1.1; family inet { unicast; import POL; local-as 2; neighbor 10.12.11.1 { description R1; ospf + area 0.0.0.1 { interface ge-1/0/0; interface ge-2/0/0;

Existing Tools Provide Single Counterexample

Existing tools for control plane can model and verify network behavior

• e.g. Minesweeper [Beckett et al. 2017]

Problem

What a single counterexample cannot tell you:

What is causing the error?

- BGP?
- OSPF?
- Static routes?
- ACL?
- Bug in the modeling?

What is the scope of the error?

- One error or many errors?
- Few IP addresses or many?
- Real error or exceptional case?

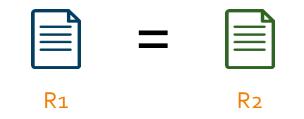
Our Goal: Error Localization

1. Find all errors

2. Find the part of the configuration causing the errors

3. Find the input sets affected

Our Setting: Equivalence of Router Pair


Task: Check that a pair of routers are equivalent / Find their differences

Upgrading / updating configuration

- Rewrite policy for different router
- Small update without major change

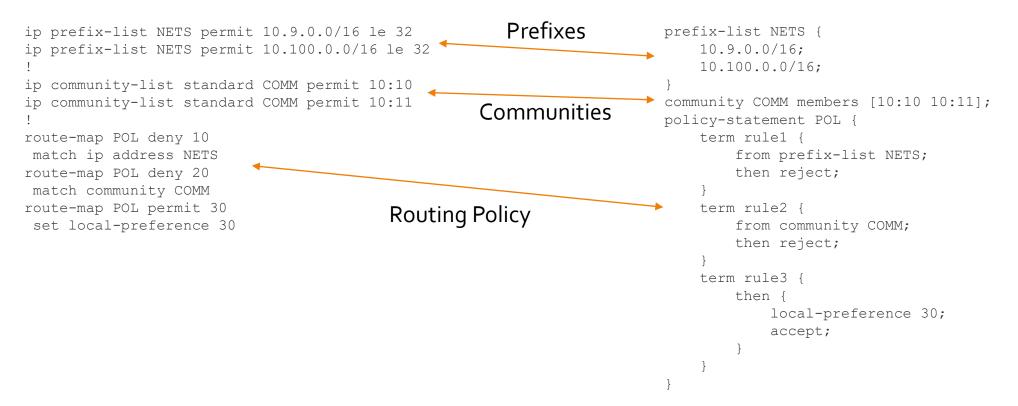
 Backups

- Intended to have same behavior
- May contain minor differences

Campion

Finds the difference between two router configurations using modular comparisons

- Finds all differences
- Text localization: configuration block or lines causing a difference
- Header localization: input headers are affected by the difference


Found bugs in major cloud datacenter and large university network configurations:

- Errors in datacenter routers could have caused service disruption
- Found unintentional policy in university core and border routers
 - Operators said was "highly unlikely" to find by manual inspection

Example

Cisco Excerpt

Juniper Excerpt

Output Comparison

Minesweeper: (after getting relevant model variables)

Route received (Cisco)	Prefix: 10.9.0.0/17		
Route received (Juniper)	Prefix: 10.9.0.0/17		
Packet	dstIp: 10.9.0.0		
Forwarding	Juniper router forwards (BGP) Cisco router does not forward		

		cisco_router	juniper_router		cisco_router	juniper_router	
Campion:	Included Prefixes	10.9.0.0/16 : 16-32 10.100.0.0/16 : 16-32		Included Prefixes	0.0.0/0 : 0-32		
	Excluded Prefixes	10.9.0.0/16 : 16-16 10.100.0.0/16 : 16-16		Excluded Prefixes	10.9.0.0/16 : 16-32 10.100.0.0/16 : 16-32		
	Policy Name	POL POL		Community	10:10		
	Action	DETECT	SET LOCAL PREF 30	Policy Name	POL	POL	
	Action	REJECT	ACCEPT	Action	REJECT	SET LOCAL PREF 30	
	Text (route-map POL deny 10 match ip address NETS	<pre>rule3 { then { local-preference 30; accept; } }</pre>	Text	route-map POL deny 20 match community COMM	ACCEPT rule3 { then { local-preference 30; accept; }	

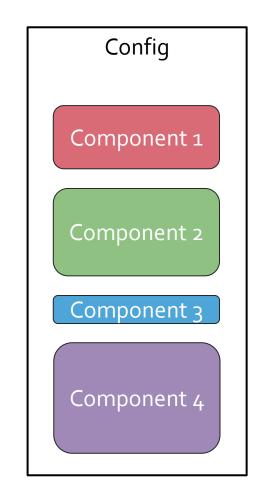
Example Difference

Cisco Excerpt

set local-preference 30

ip prefix-list NETS permit 10.9.0.0/16 le 32 ip prefix-list NETS permit 10.100.0.0/16 le 32						
ip community-list standard COMM permit 10:10						
ip communicy fist standard corm permit 10.10						
ip community-list standard COMM permit 10:11						
!						
route-map POL deny 10						
match ip address NETS						
route-map POL deny 20						
match community COMM						
route-map POL permit 30						

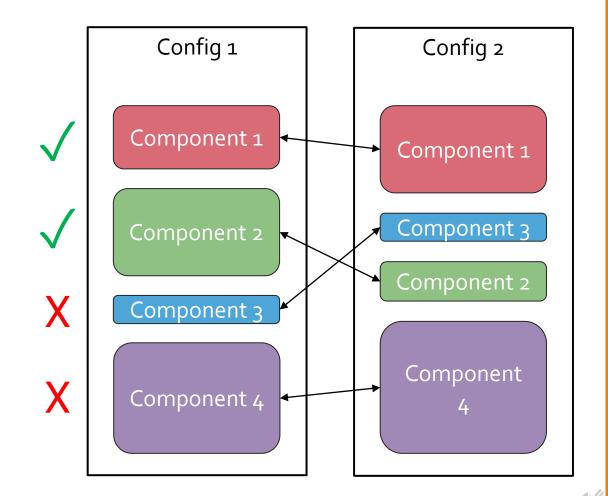
Juniper Excerpt


prefix list NETS {
 10.9.0.0/16;
 10.100.0.0/16;
}
community COMM members [10:10 10:11];
policy-statement POL {
 term rule1 {
 from prefix-list NETS;
 then reject;
 }
 term rule2 {
 from community COMM;
 then reject;
 }
 term rule3 {
 then {
 local-preference 30;
 accept;
 }
}

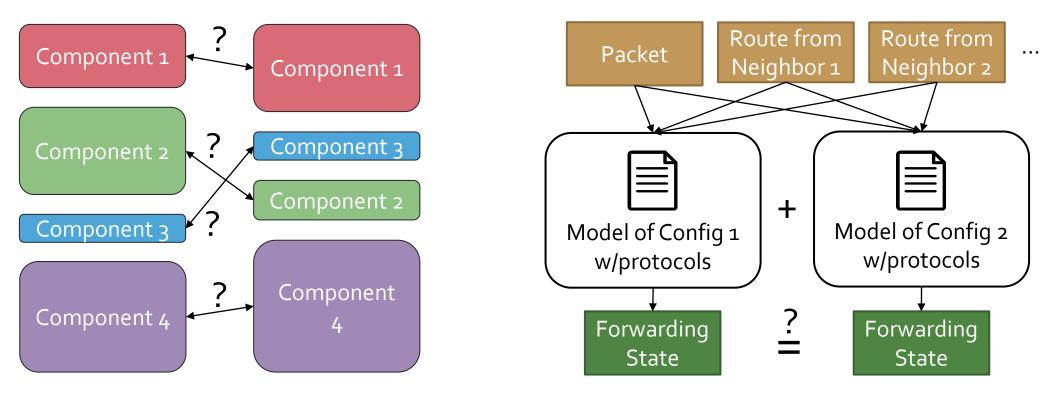
Difference 1: match /16 or longer vs. /16 exact **Difference 2:** match EITHER community vs. BOTH communities

Key Idea: Modularity

Perform checks on individual components to take advantage of config structure


- 1. Immediately localizes to component
- 2. Does not require modeling protocols
- 3. Simplifies checks for individual components
- 4. Allows tracing back to lines and getting multiple results

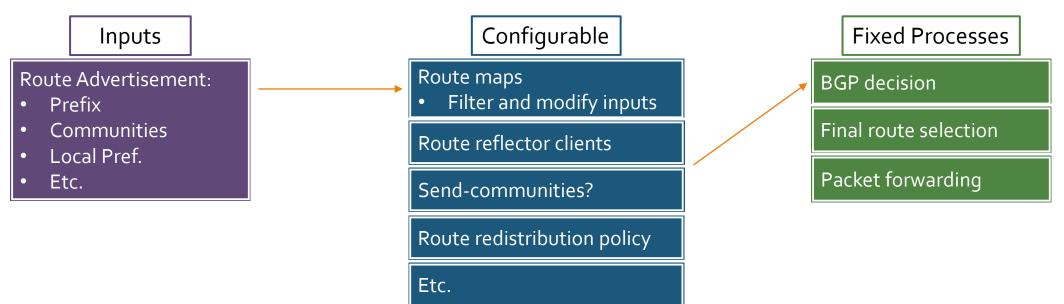
Overview


- Match corresponding components:
 > Use heuristics for matching edges
- 2. Compare corresponding components> Use structure of each component
- 3. Provide the text and headers (where applicable)
 - > Use info from configuration

Modular vs. Monolithic

Modular (Campion)

Monolithic (Minesweeper)



Avoids Modeling Protocols

Does NOT need to model or simulate protocols!

- Protocols are fixed
- Only needs to check configurable properties for all inputs

Simplifying Checks

Behavioral / Semantic Comparison

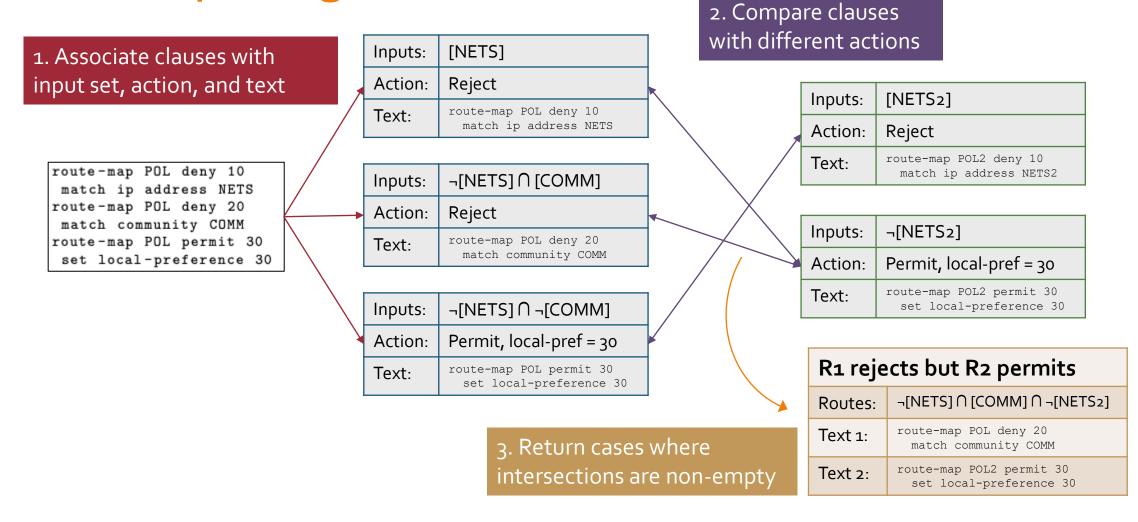
ACLs and route maps configure function on packet headers

 \rightarrow Need to model behavior

route-map POL deny 10 match ip address NETS route-map POL deny 20 match community COMM route-map POL permit 30 set local-preference 30

```
policy-statement POL {
   term rule1 {
      from prefix-list NETS;
      then reject;
   }
   term rule2 {
      from community COMM;
      then reject;
   }
   term rule3 {
      then {
        local-preference 30;
        accept;
    }
   }
}
```

Structural Comparison


Most other component behaviors can only be expressed in a one way

 \rightarrow Can be compared structurally

interface ethernet ¹/₂ ip ospf cost (65) interface fe-1/0/1.0 {
 metric 65;
}

Comparing Filter Behavior

Data Center Results

- Ran Campion on configurations from a major cloud datacenter network
- Tried on three scenarios
 - Scenario 1: Backup routers
 - Scenario 2: Router replacement to different vendor
 - Scenario 3: Gateway ACLs

- They ran Campion and interpreted results without feedback from us
- Some differences could have caused major issues if left undetected
- No false positives

Scenario	Component	Structural or Semantic	Differences	
Scenario 1	BGP	Semantic	5	
	Static Routes	Structural	2	
Scenario 2	BGP	Semantic	4	
Scenario 3	ACLs	Semantic	3	

Table 6: Data Center Network Results

University Results

- Core router and border router backup pairs
 - Different vendors
- We ran and interpreted results without knowing detailed intent
 - Confirmed errors with operators
- Found differences in multiple policies
 - Some present for nearly three years
 - Operators claimed they were unlikely to discover by manually inspecting configs
- Some false positives
 - Intentional static route differences
 - One difference that should not affect behavior

Router Pair	Route Map	Outputted Differences	Differences Reported	Confirmed	Pending
Core Routers	Export 1	5	5	4	1
	Export 2	1	1	1	0
Border Routers	Export 3	1	1	1	0
	Export 4	1	1	1	0
	Export 5	2	1	1	0
	Import	0	-	-	-

(a) SEMANTICDIFF results on route maps

Router Pair	Component	Classes of Errors	Differences Reported	Confirmed	Pending
Core	Static Routes	2	1	0	0
Routers	BGP Properties	1	1	0	0

(b) STRUCTURALDIFF results

Conclusion

- Campion can find and localize differences between two configurations
 - Gets components and lines
 - Gets input space
- Use modularity:
 - Reflects structure of the configuration
 - Avoid modeling protocols
 - Simplifies checks
 - Fine-grained localization
- We found many differences in data center and university network configurations