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Abstract

This project investigates whether “Dynamic Adaptive Streaming over HTTP”
(DASH) performs better over “Quick UDP Internet Connections”(QUIC) protocol when
compared with the existing TCP protocol. The investigation of DASH over QUIC is
done with the help of YouTube since it can employ both DASH and QUIC simultane-
ously. DASH has become quite popular in the last few years for adaptive video stream-
ing over networks which are time-varying and where video quality is tuned based on the
available link bandwidth. QUIC is a secure transport protocol developed by Google and
representing one of the most promising solutions to decreasing latency while intend-
ing to provide security properties similar with TLS. In this project we have collected
YouTube HTTP request/response messages while playing videos from YouTube under
controlled link environment with QUIC protocol enabled as well as with QUIC protocol
disabled so that TCP protocol is used for the same video. We have collected data over a
set of 175 videos under controlled (link bandwidth is adjusted manually and monitored)
environments and from this data set we observe that QUIC has a greater tendency than
TCP to switch over to higher resolutions but at the cost of more data wastage. We find
that DASH performs better over QUIC than TCP in terms of video quality since QUIC
is able to render a better or same quality video as of TCP at any instance of time under
realistic bandwidth limited setting.
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Chapter 1

Introduction

As we know, adaptive bitrate streaming has become the standard for delivering video
content online to multiple devices. This type of delivery is a combination of server and
client software that detects a clients bandwidth capacity and adjusts the quality of the
video stream between multiple bitrates and/or resolutions. The adaptive bitrate video
experience is superior to delivering a static video file at a single bitrate, because the
video stream can be switched midstream to be as good or bad as the clients available
network speed (as opposed to the buffering or interruption in playback that can happen
when clients network speed cant support the quality of video). Because it uses the stan-
dard HTTP port, the lack of firewalls, special proxies or caches, and its cost efficiency
have increased its popularity and use. There are three main protocols for this type of
delivery- HTTP Live Streaming, Microsoft Smooth Streaming, and HTTP Dynamic
Streaming. Each protocol uses different methods and formats, and therefore, to receive
the content from each server, a device must support each protocol. A standard for HTTP
streaming of multimedia content would allow a standard-based client to stream content
from any standard-based server, thereby enabling consistent playback and unification
of servers and clients of different vendors.1 In response to the scattered landscape, the
research community has developed the specifications for dynamic adaptive streaming
over HTTP (DASH), which has later on been standardized by DASH Industry Forum.2

1https://www.encoding.com/mpeg-dash/
2http://dashif.org/
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1.1 Dynamic adaptive streaming over HTTP(DASH)

DASH provides a standard solution for the efficient and easy streaming of multi-
media using existing available HTTP infrastructure (particularly servers and CDNs, but
also proxies, caches, etc.). DASH specification provides a full set of HTTP adaptive
bitrate streaming features for delivering multimedia over Internet.The features include
the following:3

• Frame-synchronized adaptive bitrate switching.

• Codec-agnostic.

• DRM-agnostic. It specifically supports the Common Encryption (CENC) system.

• Evolving support for closed-captions and subtitles.

• Support for multiple file container formats.

• Support for multiple manifest formats for VOD and live streaming.

• Fast-growing industry support.

Figure 1.1: DASH conceptual Architecture.

Source:Thomas Stockhammer, Qualcomm, DASH Design Principles and Standards , Presentation at
MMSys 2011

A DASH server provides client players with a list of the available media chunk
URLs in a Media Presentation Description (MPD) manifest file.

3https://www.wowza.com/forums/content.php?508-How-to-do-MPEG-DASH-streaming
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1.2 Quick UDP Internet Connections(QUIC): A 10,000
Feet View

QUIC (Quick UDP Internet Connections) is a new transport protocol for the internet,
developed by Google. QUIC solves a number of transport-layer and application-layer
problems experienced by modern web applications, while requiring little or no change
from application writers. QUIC is very similar to TCP+TLS+HTTP2, but implemented
on top of UDP. Having QUIC as a self-contained protocol allows innovations which are
not possible with existing protocols as they are hampered by legacy clients and middle-
boxes.4

Key advantages of QUIC over TCP+TLS+HTTP2 include:

• Connection establishment latency

• Improved congestion control

• Multiplexing without head-of-line blocking

• Forward error correction

• Connection migration

Figure 1.2: Multiplexing

Source:Gaetano Carlucci, Luca De Cicco and Saverio Mascolo. HTTP over UDP: an Ex-perimental
Investigation of QUIC.ACM SAC15, April 13 - 17 2015, Salamanca,Spain.

4https://www.chromium.org/quic
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1.3 Previous Work

Most of the work done on QUIC was how QUIC performs with respect to TCP and
SPDY in terms of page load time. In “How quick is QUIC?” [1] they studied about the
performance of QUIC, SPDY and HTTP particularly about how they affect page load
time. They found that none of these protocols is clearly better than the other two and the
actual network conditions determine which protocol performs the best. Similarly in “
HTTP over UDP: an Experimental Investigation of QUIC”[2] they found out that QUIC
reduces the overall page retrieval time with respect to HTTP in case of a channel without
induced random losses and outperforms SPDY in the case of a lossy channel. The FEC
module, when enabled, worsens the performance of QUIC. Almost all the research was
concentrated on how QUIC performs in terms of page load time, the number of RTT’s
required and how it deals when there is packet loss so basically they were concerned
about object transfers or static elements transfer and there were no major publications
on how QUIC performs if it used for video streaming services like YouTube.

1.4 Motivation and Objective

In Chromium blog on Friday, April 17, 2015 Google has released some perfor-
mance update about QUIC. In there words :

“ Results so far are positive, with the data showing that QUIC provides a real per-
formance improvement over TCP thanks to QUIC’s lower-latency connection estab-
lishment, improved congestion control, and better loss recovery. For latency-sensitive
services like web search, the largest gains come from zero-round-trip connection estab-
lishment. The standard way to do secure web browsing involves communicating over
TCP + TLS, which requires 2 to 3 round trips with a server to establish a secure connec-
tion before the browser can request the actual web page. QUIC is designed so that if a
client has talked to a given server before, it can can start sending data without any round
trips, which makes web pages load faster. The data shows that 75% percent of connec-
tions can take advantage of QUICs zero-round-trip feature. Even on a well-optimized
site like Google Search, where connections are often pre-established, we still see a 3%
improvement in mean page load time with QUIC. Another substantial gain for QUIC
is improved congestion control and loss recovery. Packet sequence numbers are never
reused when retransmitting a packet. This avoids ambiguity about which packets have

4



been received and avoids dreaded retransmission timeouts. As a result, QUIC out-
shines TCP under poor network conditions, shaving a full second off the Google
Search page load time for the slowest 1% of connections. These benefits are even
more apparent for video services like YouTube. Users report 30% fewer rebuffers
when watching videos over QUIC. This means less time spent staring at the spinner
and more time watching videos. ”5

In this context we are trying to know whether QUIC has any additional advantages
for YouTube like improved video quality rendered over time besides fewer rebuffers. Is
there any price that we need to pay for better video quality or there is no such trade-off?
In this project we mainly compare the performance in terms of video quality rendered
over time by both the protocols and check whether our hypothesis that QUIC will per-
form better over DASH when compared to TCP is valid or not and is there any price for
it.

5https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.
html
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Chapter 2

Implementation

To understand the performance of DASH over QUIC and TCP we need to have cer-
tain parameters that affect the dynamic functionality of YouTube. These parameters can
be found out from HAR files. In developer tools, there is a network monitor where the
browsers dump information about all the requests made by the current page - it includes
HTTP-request, HTTP-response, request/response time, link speed etc. This entire in-
formation can be saved as HTTP Archive (HAR) files. HAR stores the information in
JavaScript Object Notation (JSON) file format [6]. First we will describe the challenges
faced in the process to download the HAR files and then describe the experimental set-
up.

2.1 Challenges

How to automate the HAR download process from Chrome?
A tool (AutoHarExporter) was developed using selenium to capture the HAR from
Mozilla Firefox browser with the help of har export trigger (version 0.5.0-beta)
Firefox plug-in . This tool automatically opens a Firefox browser, loads a YouTube
video, waits for the video to finish and finally saves the HAR and other information to
the disk. We need to do the process of HAR collection only in Chrome since QUIC is
deployed in Chrome alone. But Chrome does not have any such plug-ins which with
the help of selenium can automate the process of downloading HAR for a YouTube
video. In an effort to automate the process we took the help of BrowserMob Proxy,
a free utility that can capture performance data for web apps (via the HAR format), as
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well as manipulate browser behavior and traffic, such as whitelisting and blacklisting
content, simulating network traffic and latency, and rewriting HTTP requests and re-
sponses. This BrowserMob Proxy along with selenium chrome driver were expected to
replicate the functionality that was observed in Firefox with the help of plug-in. Sele-

nium Chromedriver allows you to use a programming language of your choice in
designing your tests. We implemented the HAR downloading automation for Chrome
in Python.

How to handle the network proxy?
Whenever we tried to download the HAR through the python script that we had devel-
oped we always encountered an error, “ValueError: No JSON object cou-

ld be decoded”. We found that browsermob-proxy will not work with our network
proxy settings unless we explicitly encode the settings in the code. We found this ex-
plicit coding in Java but not in Python and then we realized that we require a connection
without proxy for QUIC to be enabled since our proxy servers will not be able to allow
QUIC packets to pass through.So we started using a connection without proxy and were
able to run the script without any error.

Is QUIC really used as transport protocol during video playback?
Even though we can enable QUIC in chrome using chrome://flags, we can not
be sure whether QUIC is used unless we capture data packets using Wireshark and
verify them. When we opened the chrome browser manually and load a video we were
able to see QUIC packets in wireshark but when we used the python script to open the
browser and download HAR, QUIC falls back to TCP. In order to figure out whether the
problem is with selenium chrome driver or with browsermob-proxy, we use selenium
chrome driver alone to load a video and observed the packets in the wireshark. It was
found that QUIC is being used as the underlying protocol to fetch the video data packets.
So browsermob-proxy is the reason for QUIC not being used as the underlying proto-
col when chrome browser is opened through script. Selenium chrome driver requires
an utility like browsermob-proxy to download HAR in chrome. So we scraped off this
entire mechanism and searched for new alternatives that do not use a third-party proxy.
We came across a GitHub repository(chrome-har-capturer)1 that does the same thing as
we wanted but with a minor problem. We will describe about it in the next section

1https://github.com/cyrus-and/chrome-har-capturer
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2.2 Experimental Set-up

Using the GitHub repository we are able to load a web page and download the HAR
after the page load is complete but for the YouTube video we want the HAR to be
downloaded after the video has finished up playing. We contacted the repository owner
and asked if there is any such provision and they said that there is no such provision but
you can download HAR after a pre-specified delay. So we finally found out for each
video its duration and added another 5 minutes to that in case buffering occurs as the
pre-specified delay. After this we are able to download HAR though python script using
Google Chrome Remote Interface2 and chrome-har-capturer.

In order to simulate the realistic bandwidth limited setting we throttle the available
link bandwidth. Although Chrome support throttling in network monitor, there is no
suitable way to change it from script. Therefore we make use of the throttler developed
with the Unix library NetFilterQueue [3]. It is a user-space library that provides
an API to handle packets, which have been queued by the kernel packet filter, as per
user requirement. Based on this library, traffic shaper was developed to control link
bandwidth. However, we need to continuously monitor and ensure that the backbone
network has sufficient bandwidth so that the overall link bandwidth is controlled only
by the throttling procedure. We load a YouTube video, wait for the video to finish and
then save the HAR and other information to the disk. During video playback, we also
control network bandwidth by progressively increasing the bandwidth followed by a
sudden decrease and the cycle repeats. The bandwidth levels used are from 64 Kbps to
1424 Kbps, in a step of 340Kbps. Each level of bandwidth is kept fixed for 220 seconds.

Figure 2.1: Experimental Set-up

2https://github.com/cyrus-and/chrome-remote-interface
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Chapter 3

Experimental Results

3.1 Extract Useful Information from the HTTP Head-
ers

From the HAR traces, we observe that YouTube uses a video playback request to
grab the media data from the server. URLs for these video playback requests contain 35
parameters and their values: pl, dur, expire, sver, gir, pcm2cms, mime, itag, signature,
ipbits, source, keepalive, mt, mv, ms, mm, mn, key, clen, requiressl, lmt, initcwndbps,
id, upn, sparams, fexp, ip, cpn, alr, ratebypass, c, cver, range, rn, and rbuf. By close
inspection of these parameters, we observe that the HTTP requests and responses are
forwarded separately for the audio channel and the video channel. The value of the
parameter mime indicates whether the request is for audio channel or for video channel.
Then, we figure out that the parameter itag actually indicates the video quality for which
a DASH request is made. YouTube samples every video under different video quality
levels based on its resolution, bit rate and encoding techniques used for sampling, and
assigns a numeric level to every quality, which is the itag value. The mapping between
a particular itag value and the corresponding video resolution, bit-rate and encoding
parameters are available at [4].

The behaviour of these parameters under different scenarios like “Multiple videos
multiple sessions, Single video multiple sessions, Single video single session” was ob-
served. When a value does not change over multiple videos multiple sessions, then it
indicates that the parameter does not take part in video adaptation procedure, and it basi-
cally forwards some static information, like the device and the operating system related
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information. If the value of a parameter changes for multiple video multiple sessions,
but does not change for single video multiple sessions, then we can say that it is a video
specific parameter. If the value of a parameter changes for single video multiple ses-
sions, but does not change for a single video single session even if the network quality
changes, then we can say that it is session specific. The parameters that change only
in this scenario when we change the link bandwidth, indicate that they possibly take
part in the video adaptation process. From here, it was figured out in that clen, dur,
itag, lmt, mime, rbuf, rn, signature and range are such parameters. However through
close inspection, we find the parameters mime and signature relate to video channels,
as we already discussed. Further the parameter dur denotes video duration, and it was
observed that it changes only at microsecond order which is due to the change in video
encoding technique. Consequently, we go for comparison of the other parameters be-
tween QUIC and TCP - clen, itag, lmt, range, rbuf and rn. It was observed that for the
single video single session scenario, rbuf, rn and range change even for a single itag.
On the other hand, parameters like clen change overall, but remain constant for a single
itag value.

3.2 Comparison of Target Parameters of DASH over time
between QUIC and TCP

We will briefly state what particular information these parameters contain and then
give the plot of each parameter with respect to time for QUIC and TCP for a YouTube
video. Later we present the Cumulative Distribute Function graphs for the data obtained
from the 175 YouTube videos for different parameters with respect to bandwidth and
rbuf.
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3.2.1 Parameter- clen

It has been identified that clen is the length of the video chunk for a particular itag
value. The server creates a video chunk with clen amount of data for a particular itag.
From the clen plots we observe that clen remains fixed for a particular itag value and
does not depend on whether QUIC is used or TCP is used as the underlying protocol.

(a) QUIC

(b) TCP

Figure 3.1: Plot for clen over time for a YouTube video of id <OJZgOOOE1zY>
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3.2.2 Parameter- lmt

lmt also remain constant for a particular itag value of that video. It has been found
out that lmt defines the time when the chunk was created at the YouTube server. How-
ever, this particular parameter does not help in video bit-rate adaptation, rather we pre-
sume that this is used to play the updated chunks at the clients. As YouTube down-
loads data from multiple servers [5], so this parameter is possibly used to avoid playing
outdated video chunks. From the plots we can identify that lmt is independent of the
transport layer protocol for a particular itag.

(a) QUIC

(b) TCP

Figure 3.2: Plot for lmt over time for a YouTube video of id <OJZgOOOE1zY>
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3.2.3 Parameter- rn

rn is non-decreasing for a session for any video it does not depend on a specific
video ID or any other parameter. By observing the sequence of HTTP requests sent by
the YouTube client to YouTube server, we can conclude that rn is the request number to
uniquely identify a DASH video playback request. The plots shows that QUIC makes
lesser number of DASH video playback requests when compared to TCP for the same
video so it can be expected that QUIC will be able to render the data in lesser number
of requests.

(a) QUIC

(b) TCP

Figure 3.3: Plot for rn over time for a YouTube video of id <OJZgOOOE1zY>
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3.2.4 Parameter- rbuf

rbuf is the receive buffer at the client side. The figures indicates that rbuf grows as
the YouTube client fetches more data from the server. However,with a close inspection
of the HTTP request messages, we observe that the value of rbuf decreases if there is
no request from the client to the server. Further, whenever rbuf starts decreasing, the
client starts fetching data for a different itag value (as we observe near lower bandwidth
ranges).

It can also be seen that whenever bandwidth increases, rbuf keeps on increasing up
to a maximum threshold and then remains constant. Conversely, as the bandwidth drops,
rbuf either remains constant or drops. This behavior of rbuf can be directly explained
from the receive buffer evolution of a video playback client. As a general thumb-rule,
the buffer size increases when the client fetches data from the server, and the buffer size
drops as the video gets played. When the link bandwidth increases, the YouTube client
has sufficient bandwidth to download data, and it fetches more data from the server than
the data rendered for video playback. Therefore, buffer size keeps on growing as the
data arrival rate (from the server) is more than the data service rate (for video rendering).

Nevertheless, when the link bandwidth drops, initially the data arrival rate becomes
equal to the data service rate, resulting in constant buffer size. Further, as the bandwidth
drops below a threshold, the YouTube server fails to fetch further data from the server
at the current video quality, and at this point the buffer size starts dropping. During this
period, YouTube client makes a transition to a lower video quality, and the buffer starts
building up with the data of the lower video quality,as we observe near lower bandwidth
ranges. We will describe more about this parameter in the next section along with the
plot for time range of different qualities and plot for segment length downloaded over
time.
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(a) QUIC

(b) TCP

Figure 3.4: Plot for rbuf over time for a YouTube video of id <OJZgOOOE1zY>
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3.2.5 Parameter- range

The range values have two integers separated by a dash (-). The first integer is al-
ways smaller than the second one, and therefore we can say that these two integers are
the start and end of the range values. It behaves like byte range parameter in HTTP
request header. It was concluded that range defines the byte range of the video for a
itag value that the client requests from the server. YouTube client adaptively changes
this parameter to increase or to decrease the video chunk size to download, based on
network conditions.

(a) QUIC

(b) TCP

Figure 3.5: Plot for range over time for a YouTube video of id <OJZgOOOE1zY>
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3.3 Comparison of Streaming data rate between QUIC
and TCP

In this section we will examine whether the streaming data rate variation when-
ever the bandwidth changes, is similar in QUIC and TCP. To compare the behavior of
streaming data rate adaptation, we plot how the requested video segment length (spec-
ified by the range parameter) per video playback request, changes with change in link
bandwidth. For this, we convert the byte range mentioned in the video playback request
to the equivalent video playback time, and find out the video segment length in terms
of playback time. Whenever the link bandwidth increases, YouTube first increases the
segment length of lower quality video and buffers maximum amount of video data. It
then switches to the higher quality video but with smaller segment lengths. At this
point, we observe an overlap between the segments of two different video qualities. It
then progressively increases the segment length and repeats the procedure for the next
higher quality level video if the link quality improves further (measured through the
increase rate of rbuf ). However, when the link quality drops, in a similar way, YouTube
first starts requesting for same quality video chunks of smaller segments, and drops the
segment length. If it still observes a drop in rbuf after reducing the segment length in
the playback requests, then it switches to request for the next lower quality level video
chunks of smaller segments. If the rbuf becomes stable, then only it again increases
the segment length. This behaviour is similar to both QUIC and TCP over YouTube but
from the plots we can observe that QUIC is able to switch to higher quality from a lower
quality in a shorter interval of time when compared to TCP.
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(a) QUIC

(b) TCP

Figure 3.6: Plot for Segment Length over time for a YouTube video of id
<OJZgOOOE1zY>
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3.4 Comparison of Video Quality observed over time
between QUIC and TCP

From Fig. 3.4, we observe that as link quality increases, rbuf also increases, and
YouTube client progressively makes requests for higher itag values. Further, whenever
the value of rbuf drops, YouTube client switches itag requests for a lower video qual-
ity. We already know that YouTube video quality adaptation algorithm is based on the
clients observation of the change in receive buffer a sharp increase in receive buffer
gives an indication for fetching data of higher video quality, whereas YouTube takes a
conservative approach of requesting data for lower video quality whenever the client
observes a sharp drop in receive buffer size.

From the earlier discussion,we know that range parameter gives the byte range of
the video streaming data for which the client sent a request to the server. We first con-
vert this range parameter to equivalent video segment length in terms of video playback
time. This can be done by looking into the video file header that provides a mapping
between the byte range and playback time. We use the Python package python-ebml

to extract such information from the video files. The following figures plots the video
segments (in terms of video playback time, as shown in Xaxis) and the corresponding
itag values for which the client makes a request. YouTube takes an opportunistic ap-
proach for downloading higher quality video segments when the link quality improves,
but takes a conservative approach when the link quality drops. In the opportunistic ap-
proach, it downloads the video chunks of both the video qualities in parallel, whenever it
decides to switch from the lower quality to the higher quality. However, in the conserva-
tive approach, it directly sends the request for lower quality video when the link quality
drops. That is why we notice an an overlap between the segments of lower quality and
higher quality when the video quality improves.

When we observe the plot for a single video, it is evident that QUIC is able
to maintain video quality that is higher or same as that of TCP in most cases.
From these three plots we can expect that DASH will perform better when QUIC
is employed as transport layer protocol rather than TCP in terms of video quality.
In order to prove the above hypothesis we will show the Cumulative Distribute
Function graphs collected over 175 videos in the next section.
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(a) QUIC

(b) TCP

Figure 3.7: Plot for time range of different qualities for a YouTube video of id
<OJZgOOOE1zY>
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3.5 Cumulative Distribute Function Plots

We collected the HAR data for a total of 175 videos for QUIC and TCP. We wanted
the bandwidth cycle to repeat at least once so we selected the videos that are on an
average >30 minutes in duration. The following table summaries the statistics about
the data.

Video Size Number of Videos Total Playback Duration

< 30 mins 13 5h 59m
30 − 40 mins 30 17h 08m
40 − 50 mins 90 66h 09m
50 − 60 mins 31 27h 56m
60 − 70 mins 6 6h 29m
70 − 80 mins 5 6h 11m

Table 3.1: Statistics OF YouTube Videos Used In The Experiments

3.5.1 CDF for itag with respect to various Bandwidth levels

For a particular bandwidth level we counted the number of requests made for each
itag and from that we calculated the probability for an itag as the number of requests
made for that itag divided by total number of requests made.

Itag Resolution Type

160 256x144 video/mp4
278 256x144 video/webm
133 426x240 video/mp4
242 426x240 video/webm
134 640x360 video/mp4
243 640x360 video/webm
135 854x428 video/mp4
244 854x428 video/webm

Table 3.2: Information about itags
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Figure 3.10: Number of requests and CDF of itag at 1424 kbps

The important observations that we can make from these CDF and number of requests
plots for itag is that at lower bandwidth QUIC has higher tendency than TCP towards
higher resolution but as the bandwidth increases both show similar tendencies. So at poor
Internet connection speeds QUIC will provide the viewer with a better video quality than
TCP. At lower speeds QUIC does not make as many requests to the server as TCP makes
but at higher speeds both the protocols makes the same number of requests. This implies
that QUIC is more aware of the network conditions than TCP. In the above plots when
the bandwidth is at 64Kbps TCP has made almost twice the number of requests as QUIC
made. This is because at 64Kbps when almost all the packets are dropped, TCP unable
to quickly recognize the change in bandwidth makes the request for the same higher itag
value and when they fail it makes requests for lower itags. For the total set of 175 videos
the number of requests made by QUIC are lesser in number when compared to TCP
which implies that QUIC requires less number of requests to serve the same or higher
quality data.

23



3.5.2 CDF for rbuf with respect to various Bandwidth levels

rbuf unlike itag are a continuous domain so we won’t be presenting the histogram.
At higher bandwidth levels there is not much difference between the two protocols. At
lower bandwidth, QUIC has greater tendency towards higher rbuf values when com-
pared to TCP so the buffer is emptying at a slower rate when QUIC is used. This
majorly implies that the chance for buffering is lower for QUIC when compared to TCP
as buffering mainly occurs at poor Internet speeds supporting the statement made by
Google that there were fewer rebuffers when QUIC is used instead of TCP.
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Figure 3.11: CDF of rbuf at 64 kbps

24



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700

C
D

F

Rbuf (in KB)

Value of Rbuf parameter - 744 kbps

QUIC
TCP

Figure 3.12: CDF of rbuf at 744 kbps

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700

C
D

F

Rbuf (in KB)

Value of Rbuf parameter - 1424 kbps

QUIC
TCP
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3.5.3 CDF for range with respect to various Bandwidth levels

As described earlier range parameter consists of two values separated by a
dash (-) and they define the byte range of the video for a itag value that the client
requests from the server. We have taken the difference between these two values and
plotted the CDF plots. At higher bandwidth levels the two protocols doesn’t differ but
at lower bandwidth QUIC has a greater tendency to request data in larger chunks when
compared to TCP. Since QUIC is requesting in larger chunks we can estimate that it
requires lesser number of requests to server to fetch data which is confirmed by the Fig.
3.8-3.10.
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3.5.4 CDF for Segment Length with respect to various Bandwidth
levels

This is another way of representing the range parameter. From the number of bytes
requested through range parameter we can convert it into duration of playback seconds
using the bit-rates for the itags. The trends will be similar to the CDF plots of range
with QUIC trying to request segments with longer duration when compared to TCP at
lower bandwidths but at higher bandwidths the difference is not much.
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Figure 3.17: CDF of Segment Length at 64 kbps
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3.5.5 CDF for itag with respect to various rbuf ranges(buckets)

The two protocols does not differ much with respect to rbuf. When the buffer is
smaller in amount they fetch all the itags but when the buffer is sufficiently large both
the protocols fetch data only for higher itags as it is evident in the last two plots. QUIC
makes more number of requests than TCP when the client has buffered large amount of
data. This can be interpreted as QUIC’s estimation that since buffer has large amount of
data the rate of data consumption is less when compared to data fetched so bandwidth
is sufficiently good and it can make further requests. It is also evident that most of the
requests to server were made when the buffer is low in data as both the protocols interpret
this as data depletion at a faster rate so they try to fetch data at a faster rate which means
more number of requests made.
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Figure 3.20: Number of requests and CDF of itag for rbuf <139 KB
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3.5.6 CDF for range with respect to various rbuf ranges(buckets)

The behaviour of both the protocols is similar when the buffer is quite low or quite
high but when the buffer is in the medium range QUIC and TCP show a different pattern.
When the buffer is low both the protocols take a conservative approach and request the
data in smaller chunks but QUIC requests the data in a slightly larger chunks. When the
buffer is above a threshold value QUIC and TCP differ in that QUIC tries to download
the data in larger chunks when compared to TCP. When the buffer is sufficiently high
both the protocols doesn’t differ much.
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Figure 3.25: CDF of range for rbuf < 139KB
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Figure 3.26: CDF of range for rbuf 139-278KB
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3.6 Data Wastage by QUIC and TCP

Let us look at the total data downloaded by QUIC and TCP and the data wasted by
both the protocols. Data wasted is computed by considering the fact that if there is lower
resolution data when a higher resolution is being played then the lower resolution data
is being wasted. The amount of data downloaded and data wasted has been calculated
using the bit rates available for each itag in the HAR files.
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Figure 3.29: Amount of Data Wasted

Itag Resolution Data Downloaded (Mb) DataWasted (Mb) % of Data Wasted

278 256x144 7669 3230 42.12%
242 426x240 21232 1219 5.74%
243 640x360 44894 4187 9.33%

Total 73795 8636 11.7%

Table 3.3: Data Wastage for QUIC

Itag Resolution Data Downloaded (Mb) DataWasted (Mb) % of Data Wasted

278 256x144 10049 3412 33.95%
242 426x240 23028 1399 6.07%
243 640x360 37911 2134 5.63%

Total 70988 69456 9.78%

Table 3.4: Data Wastage for TCP
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3.7 Number of Video Resolution Changes

For each protocol we counted the number of times Video resolution has changed
and categorized it into upward resolution changes and downward resolution changes.
It should not be confused that TCP is performing better with TCP making more num-
ber of upward resolution changes because we also need to look at the total number of
resolution changes ans the number of downward resolution changes.
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Chapter 4

4.1 Summary

From all these plots we can summarize that there is a trade-off between data wasted
and the video resolution observed. From the CDF plots we can conclude that QUIC has
a higher tendency to provide the user with better resolution. In order to avoid buffering
QUIC is downloading the data in such a rate that rbuf is sufficiently good enough for the
given bandwidth but at this point if the bandwidth increases and it is sufficient enough
to jump to higher resolution then QUIC quickly jumps to fetch the higher video chunks
wasting the data that is already present in the buffer. TCP as we know follows additive
increase so it will play the data already present in the buffer for a good amount of time
before fetching the data for higher resolutions. There is a price we need to pay in
terms of more data wastage to have better video resolution. This wastage may be
significant if the user has Internet connection with data limits. The main parameters
that decide how the next segment has to be downloaded are rbuf and the bandwidth.
YouTube uses a combination of these two parameters (may be some more unknown
parameters) to decide which itag has to be requested next. This is the reason for plotting
CDF with respect to bandwidth and rbuf. QUIC also provides the user with a better
viewing experience as the number of resolution changes made by QUIC are lesser when
compared to TCP.

4.2 Future Work

Motivated by the fact that QUIC provides user with a better viewing experience
we would like to investigate ways in which data wastage can be reduced and try to
check whether the behaviour is similar with other video streaming services if QUIC is
supported in them. We would also like to explore the ways in which we can design a
new streaming service in which both the advantages of TCP and QUIC are employed.
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