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The Domain Name System (DNS), one of the foundations of the modern-day Internet,

primarily translates domain names into IP addresses, enabling easy access to online services.

DNS name resolution appears simple at a high level but has evolved into a complex and

intricate protocol over time. Errors in either DNS configurations or DNS implementations have

far-reaching disruptive consequences. This is evident from past DNS issues that have rendered

popular services such as GitHub, Twitter, HBO, LinkedIn, Yelp, and Azure inaccessible

for extended periods. In this dissertation, I describe my work toward making the DNS as

robust as possible by combining formal methods with DNS-specific insights to provide strong

guarantees.

This dissertation presents the first formalization of DNS semantics, which I developed

from multiple RFCs; this serves as the foundation for the rest of my work. Second, I

detail a new technique, SCALE, for finding RFC compliance errors in DNS nameserver

implementations via automatic test generation. SCALE symbolically executes the developed

DNS formal model to jointly generate both the test queries and configurations (zone files).

ii



Using SCALE, I identified 30 new bugs in 8 popular open-source DNS implementations such

as Bind, PowerDns, Knot, and Nsd, including 3 previously unknown critical security

vulnerabilities. Third, I describe GRoot, the first verification tool for DNS configurations.

Given the DNS zone files of an organization and a property of interest, GRoot automatically

verifies that the property holds for all possible DNS queries or provides all counterexamples.

GRoot performs exhaustive and proactive static analysis of DNS configuration files using

an efficient algorithm for finding the equivalence classes of all possible queries to guarantee

key correctness properties. I conclude with a theoretical analysis of the DNS to categorize its

complexity and expressive power.
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CHAPTER 1

Introduction

The Internet has become an integral part of our live as most users access their critical

data and services online. The Internet has proven to be a centerpiece during the COVID

pandemic, with remote doctor visits and virtual meetings, sometimes even described as

life-changing [1920, KP20]. The Internet is a network of networks communicating with each

other through standardized rules, called protocols. A protocol is a standardized way of

formatting and processing data so that two or more devices implementing the same protocol

can communicate with and understand each other. The Internet operates by a collection of

protocols, collectively termed the Internet protocol suite, defined in Request for Comments

(RFCs). The RFC document of a protocol is a natural language (English) document that

contains technical specifications and organizational notes for that protocol that people use to

develop working implementations.

A key Internet protocol that enables the modern-day Internet is the Domain Name System

(DNS). The DNS provides the essential service of translating website (domain) names like

ucla.edu to their IP addresses, 127.97.27.37. Each device or a service end-point on the

Internet is given a 32-bit or 128-bit IP address; information packets from one device to another

are routed using these IP addresses. Unfortunately, it is hard for humans to remember the

device’s or service’s IP address; this is similar to how hard it is to remember phone numbers.

The phone directory idea was used in the ARPANET era (1970’s) to map human-friendly and

memorable names of devices to their machine-friendly numerical addresses by maintaining a

centralized text file called HOSTS.TXT at Stanford Research Institute. The human-friendly
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names are called domain names. This centralized version worked for a decade, but by the

1980s it became unwieldy; the file was getting bigger with frequent updates taking too much

bandwidth, prompting a strong need for an alternative decentralized model. Paul Mockapetris

took on this arduous task and created the Domain Name System in 1983.

The DNS relies on a hierarchical database distributed across multiple nameservers, which

are maintained by several different organizations to scale well for modern-day Internet traffic.

A nameserver includes a collection of zone files, each of which contains DNS resource records,

which in their simplest form are a map from a domain name to a corresponding IP address.

The client interacts with these nameservers to traverse the hierarchical database to resolve

a domain name to an IP address. The process or the software that performs this traversal

on the client side is called a resolver. The DNS is on the critical path of every application

we use today, as every client application first needs to resolve the name to an IP address

to communicate with application servers. Unfortunately, the DNS is a fragile protocol; in

particular, it is easy to make two classes of correctness errors in DNS that cause it to often

fail.

The first class of errors are DNS protocol implementation errors. There are many popular

nameserver implementations of the DNS protocol in the wild, both via open-source [Con86,

Lab02a, CZ11, HC02] and in public or private clouds [Ama10, SBK20, Goo22, Mic22]. The

DNS protocol, which started with two RFCs [Moc87a, Moc87b] in 1987, has evolved into

a complex protocol, currently spread across more than 30 RFCs [sta22]. It is difficult to

write an efficient, high-throughput, multi-threaded implementation that is also bug-free and

compliant with these RFC specifications. Multiple implementations must interoperate with

each other as different organizations can use different software. The implementations can

suffer from incorrect or implementation-specific behavior that can cause crashes, outages,

security vulnerabilities, and more.

The second class of errors are errors in DNS configurations. Operators within organizations

manage the DNS by specifying how DNS nameservers should respond to different types of
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user queries — e.g., whether to return an IP address, rewrite the user query, delegate the

query to another nameserver using server-level configuration files called zone files. While

some automation exists — for example in primary-secondary replication of servers — many

records in zone files are manually configured, especially at the interfaces between ownership

boundaries. For example, customers of CDNs such as Akamai must manually configure their

DNS records to point to CDN locations [Aka20]. Authoring and maintaining correct DNS

configurations is quite challenging. Zone files tend to have thousands of records with multiple

record types and complex dependencies distributed across nameservers, making the DNS

intricate and subtle. Reasoning about how a single query will get resolved in the DNS (which

is inherently nondeterministic due to multiple nameservers serving the same zone) is in itself

a daunting task; worse, operators must ensure that all possible queries behave as intended.

Consequently, errors in either zone files or software that lead to performance or connectivity

issues are widespread in practice [Zel13, Yor15, Inf19, New10, Tun19, Spe21, Sta21, Cla21].

To make matters worse, errors in DNS are often highly disruptive due to its global presence and

residual caching effects from resolvers. For example, a recent DNS zone file misconfiguration

at Microsoft resulted in a global outage impacting all Azure customers for 2 hours [Tun19].

Similarly, bugs in nameserver and resolver software lead to security vulnerabilities [Kov18,

Ras16] that an attacker can exploit remotely to cause severe damage [Bin22, Pow22, NSD22,

Fri08]. In summary, DNS is a single point of failure for Internet systems, making it the

Achilles’ heel of the Internet [Pom17].

To prevent these two classes of errors, we rely today on a mix of techniques such as

monitoring, manual testing, fuzz testing, and manual review. However, these approaches can

neither find functional correctness issues (software not adhering to the specifications (RFCs)

or configurations violating user-defined properties, nor provide any strong guarantees — the

system may still have bugs even after checking with conventional methods. This is because

it is impossible to test for every possible input, given the huge state space, even more than

the number of atoms in the universe. Further, monitoring-based approaches can only catch
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errors after they have already been introduced into a live system: they cannot find latent,

hidden bugs that can only be triggered in specific scenarios.

This thesis addresses the two classes of correctness errors in DNS — protocol implemen-

tation errors and organization-specific configuration (zone file) errors — with the help of

formal methods to provide provable correctness guarantees to make DNS robust. Formal

methods [But01, Col98], techniques based on mathematical logic, have helped researchers

answer the seemingly impossible question: “can any input to a program result in that program

producing an incorrect output?” They provide guarantees such as correctness with respect to

a specification by formally proving the desired properties. Traditionally, formal methods have

been extensively applied to verify hardware [KG99] and software systems [God97, Sch01].

Researchers have started exploring the use of formal methods for networking in the

past decade with the rise of cloud networking. There is a large body of work on verifying

the configurations at the network routing layer, and researchers have proposed numerous

techniques to perform such verification generally, efficiently, and incrementally [KVM12,

KZC12, MKA11, LBG15, FSF16, GVA16, BGM17, FFP15, BBC19, JBP19, ZLY20, BG22].

Unfortunately, there are no such existing techniques for DNS. While the semantics of routing

and forwarding are well understood (e.g., longest prefix matching), the semantics of DNS

is relatively poorly understood by comparison. More generally, while there are superficial

similarities between routing and DNS, the specific details are vastly different. For example,

DNS introduces new challenges due to nondeterminism, query rewriting, delegation, and

distributed management. We therefore need new techniques that address these challenges.

These new techniques can also be generalized in the future to apply to other protocols of the

network ecosystem that have similar challenges. Moreover, much of the work in the network

verification area has focused on router configurations, leaving to individual router vendors

the task of checking whether network devices implement their protocols correctly. My thesis

on using formal methods for DNS is a contribution on multiple fronts that can serve as the

basis of future work in the broader network verification area, as I explain below.
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To develop techniques using formal methods, we need to precisely reason about the

behavior of the DNS. Although existing RFC standards specify the behavior of the DNS,

these standards are informal and described in English. Therefore, as part of this thesis, we

first present a mathematical formalization of the DNS that allows for the development of

automated techniques with strong guarantees. The formal model of DNS that we developed

from multiple RFCs is the first formal model of DNS and serves as the foundation for the

rest of my thesis.

Using the formal model, I developed the first automatic test generator for finding RFC

compliance errors in DNS nameserver implementations to handle protocol implementation

errors. The test generation approach handles the large space of possible scenarios and the

need to generate both user queries and zone files. It does so by creating an executable

model of the above formal DNS resolution semantics and then symbolically executing it

for all paths through the model up to a bound, but that still generates tests that cover

many distinct nameserver behaviors. The next part of this thesis describes how to perform

proactive verification of DNS configurations; this work is the first work on DNS configuration

verification. Given the DNS zone files of an organization and a property of interest, GRoot

can automatically verify that the property holds for all possible DNS queries, or provides all

counterexamples.

Next, we observe that the DNS, which started as a simple distributed key-value store to

get the IP address for a domain, quickly gained popularity and began to be used to retrieve

other kinds of information to enable different use-cases [RW12a, DNS22a, DNS22b, Mea02].

That was made possible by adding new resource record types to the DNS protocol, each with

its accompanying semantics [Aut22]. Unfortunately, adding new record types also increases

the complexity of the protocol, leading to a decrease in the ease with which humans and

machines can analyze the system. In the final part of my thesis, I analyze the theoretical

complexity of the DNS protocol to categorize its power. I show that DNS has surprising

complexity with the power to express regular languages and pushdown systems.
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128.97.27.37
128.97.27.37

Figure 1.1: The resolution process for the domain name ucla.edu (with no caching).

In the remainder of this introduction, I start in Section 1.1 by giving an overview of how

a domain name is resolved to an IP address in the DNS. In Section 1.2, I give an example

and background information about DNS configurations – the zone files. Section 1.3 mentions

some major outages due to DNS errors to show how costly and common the errors in the

DNS are. Finally, Section 1.4 describes the thesis statement and overview the techniques

that I have developed to make DNS robust.

1.1 Domain Name Resolution

The DNS, as I have described earlier, is a distributed database that operates in hierarchical

fashion. Intuitively, each nameserver has a chunk of the entire database in the form of zone

files. The root nameservers are the starting point for any domain name resolution. They can

either return the information the user requested (if they have it), or point to downstream

nameservers which can help resolve the name. The process happens recursively until the user

reaches a nameserver that has the final response.
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For instance, consider the example resolution in Figure 1.1. To access the ucla.edu

website, the user’s browser first needs to resolve it to an IP address (step 1). To get the IP

address, the browser sends a DNS query to a local resolver, e.g. from the user’s ISP (step 2).

The resolver is responsible for initiating and going through the full DNS resolution process to

resolve the domain name on behalf of the user to return the resource sought, which in this

case is an IP address. The resolver starts by sending the query to one of the root nameservers,

of which there can be many, to ensure redundancy and availability of the DNS information.

Each resolver is bootstrapped with the IP addresses of the root nameservers to avoid circular

dependencies, as the root nameservers are also identified with domain names.

The resolver chooses one of the root nameservers nondeterministically to send the query.

The root nameserver does not know the IP address of ucla.edu as there is no record for it in

its zone file, but it has downstream nameserver records for edu. These records mean that

for any information about edu domain or any domains ending with edu, the resolver must

contact the nameservers mentioned in those records (step 3). The process repeats (step 4).

The resolver caches the responses returned by nameservers to reduce the resolution time for

the future queries. Eventually, the query reaches the server with the IP address record, which

it returns to the resolver (step 5), which returns it to the user’s device (step 6) and the user

can reach the UCLA web server.

But who decides which chunk of the database is allocated to particular nameservers and

how these databases are updated?

The Internet Corporation for Assigned Names and Numbers (ICANN), a non-profit

organization, helps coordinate the DNS. It maintains one of the root nameservers and entrusts

the operation of the rest of the root nameservers to various organizations, including NASA,

and Verisign. Each top-level domain (TLD), which is immediately below the root domain like

‘.com’, ‘.org’, ‘.uk’, and ‘.edu’, is maintained and serviced by an administrative organization

called a registry. Each registry delegates the commercial sales of domain name registrations

in their TLD domain space to registrars. For example, when a registrar sells a campus.edu
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domain registration to an end-user or organization, the registrar must notify EduCase — the

registry for ‘.edu’ domain.

The organization which registered the campus.edu domain now has the autonomy to decide

which nameservers serve the campus.edu domain and further controls how the campus.edu

namespace is organized and what information will be returned. The EduCase registry

updates all of the ‘.edu’ nameservers’ zone files with the information that to seek any

information related to campus.edu and its subdomains, query the nameservers picked by the

organization. A subdomain of campus.edu is any domain name that ends with campus.edu,

such as cs.campus.edu, www.ee.campus.edu, etc. The organization can create subdomains of

campus.edu and delegate control of newly created subdomains to other nameservers.

1.2 DNS Configurations (Zone files)

Each organization that registers a domain namespace maintains and organizes it with the

help of configuration files, which are called zone files in the DNS terminology. The nameserver

software uses the zone files to answer user information requests, called DNS queries. For

example, information about ucla.edu domain name space is available to the users through

the following four nameservers - ns1.dns.ucla.edu, ns2.dns.ucla.edu, ns3.dns.ucla.edu,

and ns4.dns.ucla.edu, where each of them has the (likely same) ucla.edu zone file. Most

nameservers will disallow a user query to transfer the entire zone file for security reasons;

instead, they only respond to individual resource queries.

At the highest level, each zone file is a collection of resource records, whose format is fixed

by the RFCs. A resource record has 5 fields - domain name, type, time to live, class and

type-specific data. An example zone file for the campus.edu zone at the nameserver ns1.com

is shown below.

Every zone file must have a resource record of type SOA (start-of-authority), which contains

administrative information about the zone. In our example, we assume the administration
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campus.edu. SOA 500 IN ns1.com. admin.uni.edu. 11 600 30 400 500

cs.campus.edu. NS 500 IN ns1.campus.edu.
ns1.campus.edu. A 500 IN 1.2.3.4

Figure 1.2: Example zone file for campus.edu zone.

decides to cede the responsibility of the cs subdomain to the Computer Science department;

to do so, it creates a delegation (NS) in the zone file. The CS department DNS admin

will create a new cs.campus.edu zone file and manage its subspace. The CS admin has

decided to use the ns1.campus.edu nameserver for their zone, which they must communicate

and update in the campus.edu zone file. The ns1.campus.edu nameserver is under (or more

formally, a subdomain of) campus.edu; therefore, the DNS administrator should also add its

IP address (A) to the zone file. Without that bootstrap record, the user cannot resolve the

ns1.campus.edu name to contact it to retrieve any information about the cs zone.

Note that in this example even a simple configuration requires coordination between

two admininstrators; a slight mistake or error from the CS admininstrator can render the

cs website and all the resources under it unreachable. When the nameserver is changed or

assigned a new IP address, the admin must remember and update it in the parent campus.edu

zone file. Things get more complicated when record types that rewrite the input query are

employed, making it even harder for the administrator to reason about all possible behaviors.

The DNS nameserver software developers must carefully consider various record types

and interactions to respond correctly to user queries. For example, for the user query,

www.cs.campus.edu, the DNS nameserver implementation should return the NS record; the

implementation can even go further and proactively return the A record to avoid extra round-

trips from the user to the same nameserver. Any error in understanding the semantics of

record types and accompanying nuances will result in the implementation returning incorrect

responses, even though the zone file is correct.
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1.3 The Cost of DNS Errors

Figure 1.3: A Haiku (Japanese short poem) that SSBroski

(a network engineer) came up with to describe his experience

diagnosing network issues.

Given the delicate nature of the DNS,

even a minor error in the zone files

or the nameserver implementation

can render a vital service unavail-

able for extended periods causing a

widespread outage. An unfortunate

consequence of the fragility of the

DNS is that such outages are all-too-

common, with DNS-related outages

making the headline news frequently.

There is even a popular joke among

network operators that DNS is al-

ways to blame when a network outage happens, even when it initially did not seem that way.

The Haiku shown in Figure 1.3 is widely popular among network engineers and sysadmins. It

shows how common DNS-related outages are and how unforgiving they can be. The following

is a small subset of the real incidents caused by DNS errors.

• In 2021, Slack had an outage that lasted for 24 hours and impacted around 1% of

their online user base (>10 Million). It was triggered by a subtle bug in Amazon

Route 53 DNS implementation. Slack uses the Amazon Route 53 DNS nameserver

implementation to serve their zone files. Slack was impacted by the bug and rolled

back. The rollback caused massive impact to Slack users [Raf21].

• In 2021, Salesforce made an erroneous DNS configuration change which impacted

multiple data centers, affecting the Salesforce service for customers and Salesforce

authenticator, and limited internal access for the Salesforce Technology team and
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Subject Matter Experts (SMEs) investigating the disruption. In addition, the sta-

tus.salesforce.com Trust site became unavailable during the incident [Spe21].

• In 2019, Microsoft experienced one of its worst outages due to DNS which lasted for

many hours due to caching effects. The outage affected many services within Microsoft

Azure such as Compute, Storage, App Service, Azure Active Directory, and Azure

SQL Database services. Additional Microsoft services were affected as well, including

Microsoft 365, Dynamics, Azure DevOps, and more [Tun19].

• In 2018, a misconfiguration for the JavaScript Node Package Manager (NPM) caused

some users to lose access to the service world-wide for almost 48 hours [npm18].

• In 2014, a misconfiguration at GitHub resulted in a loss of access to open source

repositories. As a result of this outage, GitHub customers experienced 42 minutes of

downtime of services along with an additional 1 hour and 35 minutes of downtime

within a subset of repositories as they worked to restore full service[Fry14].

• In 2008, Dan Kaminsky discovered a serious vulnerability in almost all the DNS

implementations. This vulnerability could allow an attacker to launch cache poisoning

attacks redirecting network clients from a legitimate web site to a fake one without the

web site operator or end-user knowing, presumably for nefarious ends. This caused

quite a furor in the security community, and led to a mad dash to patch DNS servers

worldwide [Fri08].

While these are a few of the large DNS-related incidents that are publicly visible, less

extreme errors are also quite common; there are inconsistencies in almost all the newer

TLD zone files and over 13 million second-level domains [SJR20, BG17, SMJ20]. Such

inconsistencies in the zone files affect query load distribution and resolution latency, and

pose a risk to the availability of the zone. The recent TsuNAME vulnerability showed how

misconfigured zone files with cyclic dependencies could be exploited to carry out distributed
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denial-of-service (DDoS) attacks against critical DNS infrastructure like large TLDs or ccTLDs,

potentially affecting country-specific services [MCH21]. Researchers have also demonstrated

the possibility of various DDoS attacks against different DNS implementations that take

advantage of the DNS semantics of referrals, rewrite record types, and wildcard records [BR18,

ABS20]. An attacker can remotely exploit such DNS features if the implementations do not

adequately safeguard against them.

1.4 Thesis Statement and Contributions

For a proper working Internet, it is crucial to ensure the robustness of DNS. This specifically

involves checking that there are no inputs that can lead to bad or incorrect DNS behavior.

My thesis is that we can combine formal methods, which have proved successful in other areas,

with DNS-specific insights to develop techniques that can provide strong correctness guarantees

that help achieve a robust DNS. Recall that DNS, as described above, has two classes of

correctness errors: protocol implementation errors and organization-specific configuration

errors. My goal is to develop techniques based on formal methods that address both kinds of

errors and make DNS robust.

I have made significant progress on the proposed goals during my doctoral program. In

this thesis, I make four contributions (Figure 1.4) to improve the DNS. The following four

subsections briefly describe each of the four contributions, which are described in detail

in the subsequent chapters. Section 1.4.1 describes the need and challenges involved in

developing a formal model for the DNS. Next, in Section 1.4.2, I present a technique called

SCALE and a tool based on this technique Ferret to tackle DNS protocol implementation

errors in DNS nameserver implementations. I present a configuration verifier, GRoot, in

Section 1.4.3 that can proactively catch any errors in organization-specific configurations.

As a final contribution, I present a theoretical complexity analysis of the DNS protocol in

Section 1.4.4 to help better understand the DNS and categorize its power.
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Figure 1.4: My four contributions through this thesis for improving the DNS.

1.4.1 Developing a DNS Formal Model

To this day, DNS implementers must read and interpret tens of hundreds of RFC specification

pages. They find it hard to interpret these specifications mainly because they are in an

easy-to-misinterpret colloquial English that can be ambiguous. When faced with ambiguity,
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the choices they make can have broad ramifications. This is because implementation must

interoperate with other implementations written at a different time. The fact that there is an

errata for the majority of the published RFCs highlights the ambiguity and problems caused

by RFCs written in informal English [For22].

To address these issues, multiple protocol specification languages have been proposed over

the years to provide formal descriptions of the protocol [BD87, KKM99, MZ19b, MBJ20].

However, there are both technical and social reasons for RFCs still being specified in English

over formal descriptions. Technical limitations include the incompleteness of the specification

languages, whereas the social or non-technical roadblocks include a lack of familiarity and

expertise with formal techniques by engineers.

Having an unambiguous formal description of the protocol not only helps protocol imple-

mentation developers but is a prerequisite to developing any tools that provide correctness

guarantees. Therefore, to exhaustively verify the behavior of the DNS, this thesis starts by

formalizing its behavior. Ideally, the formal model should be precise about the key behavioral

aspects of the protocol but is also reasonably abstract; this allows developers the freedom

to make decisions on the implementation’s low-level details (for example, the kind of data

structures used) and hence, the model should apply to many different implementations.

Using a formal model to provide strong guarantees dates back at least half a century

when techniques like Floyd-Hoare logic [Flo67, Hoa69] and Dijkstra’s predicate transformer

semantics [Dij75] were used to reason about software programs rigorously. Formal techniques

have been traditionally used to verify computer hardware like formal verification of chip

correctness [Ben01, FM18] and software like program verification [God97, Sch01, BH14] and

developing a verified kernel implementation [KEH09]. Formal models were also used, though

in a limited fashion, in networked systems to verify a routing protocol [BOG02] and some

aspects of TCP and UDP [BFN05].

Unfortunately, there is no existing formal model of DNS behavior that we can use to

develop techniques with strong guarantees to check for correctness. Therefore, we took on the
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time-consuming task of going through multiple DNS RFCs to build a formal, mathematical

semantics for DNS, including both nameserver lookup and recursive resolution. We did not use

any specific protocol specification language; instead, we developed it as a language-agnostic,

declarative, mathematical (paper) formalism.

A key technical challenge in formalizing this model was to accurately capture the behavior

of DNS in the presence of many complex features such as nondeterminism, wildcard records,

referrals, different types of rewrites, and many other features, all of which interact in subtle

ways. There were times when we developed an initial model after reading the RFCs, only

to realize we had misinterpreted the RFC after testing a few examples with an actual

implementation like Bind [Con86]. To our knowledge, this is the first formal model of DNS;

we hope that in the future, researchers can build on this model to more precisely reason

about DNS behavior.

1.4.2 Handling Protocol Implementation Errors

A DNS nameserver implementation is developed like any other large software. Developers

implement the logic described in the specifications and validate the correctness of the

implemented logic using a small set of manually written unit tests. Manually writing tests is

onerous for all software developers: they have to write good tests that cover a wide range of

program behaviors. The situation is worse for DNS implementers as a DNS test case consists

of both a query and a configuration (zone file). The DNS developer must come up with both

of them, keeping in mind that the query must be related to the zone file for the test to reach

the core query resolution logic.

This part of the thesis automatically generates high-coverage query and zone file inputs

to stress test query resolution of DNS nameserver implementations to find behavioral errors.

Doing so is challenging because zone files must satisfy several structural constraints to be

well-formed, and because zone files have many different kinds of record types and features and

subtle interactions among them. Existing standard automated test generation approaches
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like fuzz testing [Pat22, Foo15, Cam19, St10], and symbolic execution [Kin76, SCP14, RE15]

of the implementations are not suitable for our needs. As we will argue, they both have

difficulty with generating complex structured inputs requirements like zone files. It is hardly

surprising that existing techniques do not generate zone files.

I will illustrate why it is hard to generate good tests for DNS nameservers with the help

of an important test our approach generated that exposed a previously unknown performance

bug in Bind [Con86], one of the widely used DNS implementations. The zone file part of

the test is shown in Figure 1.2 and the test query name was www.cs.campus.edu. Both the

test zone file and the query were completely auto-generated by our approach. In this test

case, the query matches the NS record in the zone file. Nsd [Lab02a], Knot [CZ11], and

PowerDns [HC02] correctly return the NS record along with the A record, avoiding extra

round-trips to determine the nameserver’s IP address, while Bind returns only the NS record,

which the developers agreed to be an erroneous behavior.

Even though the zone file we generated has only a few records, it has complex dependencies

that must be met to trigger this behavior in Bind. First, there must be a delegation of the

query to another nameserver. Second, that nameserver must be in the same zone. Third, that

nameserver must be a sibling domain. Fourth, there must be an A record for that nameserver

in the zone. Given these dependencies, it is understandable that prior testing techniques

did not uncover the bug and how quickly it becomes intractable for humans to write tests

manually.

This thesis presents a new approach for automated testing of DNS nameserver implemen-

tations, call SCALE (Small-scope Constraint-driven Automated Logical Execution), which

jointly generates zone files and the corresponding queries, does so in a way that is targeted

toward covering many different RFC behaviors, and is applicable to black-box DNS name-

server implementations. The key insight underlying SCALE is to use the formal model of the

logical behaviors of the DNS resolution process to guide test generation. Specifically, we have

created an executable version of the formal semantics of DNS described in Chapter 3 of the
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thesis, which we then symbolically execute to generate tests for black-box DNS nameservers

— each test consisting of a well-formed zone file and a query that together cause execution to

explore a particular RFC behavior.

We have built a tool called Ferret based on this approach and applied it to test 8

open-source DNS implementations, including popular implementations such as Bind [Con86],

PowerDns [HC02], Knot [CZ11], and Nsd [Lab02a]. We identified and reported 30 new

unique bugs from these test cases, including at least one bug in every implementation, of

which 21 have already been fixed. Many of these bugs existed in even the most popular DNS

implementations, including a critical vulnerability in Bind that attackers could easily exploit

to crash DNS resolvers and nameservers remotely. The Ferret tests were also used to test

the DNS nameserver implementation of a major e-commerce company, and the tests are

integrated as unit tests in their internal continuous integration and development (CI/CD)

pipeline. Due to confidentiality reasons, I will not discuss these results in this thesis.

1.4.3 Handling Organization-specific Configuration Errors

Today, many operators use blackbox techniques for checking DNS configuration correctness

(e.g., live testing and monitoring). For example, operators can monitor for ongoing problems

through offerings from commercial vendors, such as ThousandEyes [Kep20], CheckHost [Hos20]

or research tools [PFM04]. These approaches are incomplete because they lack direct

knowledge of the configurations and cannot comprehensively explore the space of possible DNS

queries. Therefore, they cannot provide correctness guarantees. Further, these approaches

are reactive in that they can detect errors after they have been introduced into a live system,

in which case, the damage has already begun.

This thesis investigates an alternative approach, namely proactive verification of the DNS

configurations - the zone files. To the best of our knowledge, GRoot is the first verification

tool for DNS configurations. GRoot performs static analysis of DNS zone files, enabling an

organization to use GRoot before deploying their zone files to find DNS misconfigurations
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and is, therefore, proactive. Some example properties that GRoot can check on the zone

files are - “Is there any query that will be rewritten in a loop for the input zone files?”, or “Is

there any query for which different DNS executions will result in different answers?”

For all such properties, GRoot provides all queries that violate the property and when

no counter-example is found, it is guaranteed that the system is robust with respect to zone

files; therefore, GRoot is exhaustive and so is a verifier and not a tester. While the number

of possible DNS queries is huge, I observe that the number of distinct behaviors is much

smaller and is a function of the zone files. Based on this insight, GRoot first performs an

analysis of the zone files to partition all possible queries into equivalence classes (ECs) each

of which captures a distinct behavior. GRoot then performs a symbolic execution of each

EC to produce its set of answers and check the given property. Our formal model of the DNS

resolution is crucial for the efficient symbolic execution in GRoot. I provide various proofs

in Chapter 5 to show GRoot performs sound and complete verification, and also generally

provides a massive reduction in complexity by generating a small number of equivalence

classes.

GRoot was applied to zone files obtained from a large campus network, a large infrastruc-

ture service provider, and a large cloud provider. The campus zone files have over a hundred

thousand records, and GRoot revealed 109 new bugs in under 10 seconds. When applied to

internal zone files consisting of over 3.5 million records from a large infrastructure service

provider, GRoot revealed around 160k issues of blackholing (query is eventually rewritten

and does not resolve to an IP address) in 3 minutes, which initiated a cleanup of the zone files.

On the large cloud provider zone files, GRoot found many property violations, including

four cyclic zone dependencies. Due to confidentiality reasons, I will not be describing the

issues found in the cloud provider further in this thesis. Finally, on a synthetic dataset that I

created from over 65 million real DNS records [DNS13] I found that GRoot can scale to

networks with tens of millions of records spread across tens of thousands of zones.
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1.4.4 Analysing DNS Theoretical Complexity

Internet pioneer Geoff Huston [Hus20] once made the following profound remark about

DNS: “The DNS is simple in the same way that Chess or Go are simple. They have all

constrained environments governed by a small set of rigid rules, but they all possess astonishing

complexity.” After going through multiple RFCs to develop the tools to handle both kinds

of errors mentioned above and make DNS robust, I completely agree with his statement.

DNS is significantly more complex than people realize. I was intrigued and motivated by the

recent results that show that Internet protocols can be surprisingly complex; in particular,

that BGP [RHL06] is Turing complete [CCD13]. I asked the same question for the Domain

Name System (DNS). This seems like an important fundamental question because DNS is at

least as pervasive and essential as BGP in the global Internet infrastructure.

Besides the scientific interest, the complexity of DNS can have implications for new

applications (that can utilize the unsuspected power of DNS), for security (to understand how

attackers can exploit DNS via new vectors and how to defend against it), and for verification

(to understand basic complexity limits and suggest new verification algorithms). In this

thesis, I show how DNS can recognize arbitrary regular languages using a single zone file at

a single nameserver, which can be used to build a system for controlling domain access (of

which parental control is a particular case).

Next, I demonstrate that the power of DNS extends beyond regular languages by showing

how pushdown systems (PDS) can be encoded in DNS. A pushdown system is a transition

system equipped with a finite set of control locations and a stack. The stack length is

unbounded, and hence, a PDS may have infinitely many reachable states, making them more

powerful than a regular language recognizer. I take advantage of the inherent nondeterminism

in DNS due to nameserver delegation to encode a PDS in DNS and use this as a subroutine

to generate strings of arbitrary context-free grammars. Consequently, the verification of DNS

configurations is likely to require time cubic in the number of DNS records in the worst case.
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I believe DNS has the same power as a PDS, and therefore, DNS is not Turing-complete.

The proof for reducing DNS to PDS is a work in progress and will, unfortunately, not be

part of this thesis. I do, however, sketch the proof intuition in Figure 7.1.

1.5 Additional Comments

The work in this thesis is a revised and extended presentation of research developed through

collaborative work. The chapters herein are based on a series of co-authored papers [KBA20a,

KBM22, KBM21]. Chapter 3 of the foundational DNS formal model was presented as part

of the paper published in SIGCOMM 2020 [KBA20a], which won a best student paper

award. Chapter 4 on finding RFC compliance bugs (protocol-implementation errors) in DNS

nameserver implementations is based on a paper from NSDI 2022 [KBM22]. The configuration

verification work presented in Chapter 5 was part of the SIGCOMM 2020 [KBA20a] paper

that also introduced the first formal model for DNS. Finally, Chapter 6 on DNS complexity

is based on work that appeared in HotNets 2021 [KBM21].
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CHAPTER 2

DNS Background

In this chapter I give an overview of the DNS, summarizing the key ideas and concepts

defined across various RFCs necessary to understand our work. This includes a description

of the domain namespace (Section 2.1), the fields of DNS resource records, resource records

types used throughout this thesis, their intended use (Section 2.2), and how they influence

the query resolution process at a nameserver (Section 2.3). I also briefly describe wildcard

records (Section 2.4) in this chapter. Readers familiar with these DNS concepts can skip

ahead to the DNS formal model chapter (Chapter 3).

2.1 Domain Namespace

A domain name consists of one or more parts, technically called labels, that are conventionally

concatenated and delimited by dots (.), such as ucla.edu. These labels form a tree-like

hierarchy with the root as an empty label and edu as a child of it, and so on. Each label

may contain zero to 63 characters, and the label with zero characters is reserved for the root

node. The hierarchy of domains descends from the right to left - the label immediately left

to another is a child node of the label on the right. The left label is called a subdomain

of the domain on the right. A small part of the domain namespace is shown in Figure 2.1.

For example, the domain name ucla.edu is represented by a thick brown line in the figure

showing how the labels are arranged in a hierarchical order. The full domain name may not

exceed the length of 253 characters, including the ., when represented in its textual form.
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cs.uni.edu.

Zone file for uni.edu.

Figure 2.1: Example domain namespace with some commonly used domain names. The uni and all of

its subdomains except cs can be managed by one team, where as a specialised team can handle cs and

the subdomains under it.

Ideally, the domain name should end with the trailing ., but it is generally ignored when

written in the text form for brevity.

2.2 Resource Records and Zones

Each label at any level in the hierarchy can contain information, and the user obtains that

information by querying the domain name formed by joining the labels from that node to

the root. An example sequence of steps of how a user retrieves the information with the help

of a resolver is described in Section 1.1. Data is stored as DNS resource records (RRs) where

each record has the following fields:

1. Name: The name of the node to which this record belongs to. It is generally represented

as the full domain name starting with the node in the tree and going up to the root

node while concatenating the nodes on the path.
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Example Record Description
uni.edu. SOA ns1.com. admin 11 600 30 400 500 Start of authority record

a.uni.edu. A 1.2.3.1 IPv4 record
q.b.uni.edu. AAAA 1:db8::2:1 IPv6 record
∗.uni.edu. TXT “Awesome” Wildcard Text record

cs.uni.edu. NS n.cs.uni.edu. Delegation record
n.cs.uni.edu. A 5.4.2.7 Glue IPv4 record
www.uni.edu. CNAME uni.edu. Canonical name
ee.uni.edu. DNAME elec.com. Domain redirection

Table 2.1: uni.edu. zone file showing common DNS record types (the class and TTL fields are omitted).

2. Type: The type of the resource in this resource record. Types refer to abstract

resources. It indicates the format of the data and it gives a hint of its intended use.

For example, the A record is used to translate from a domain name to an IPv4 address.

3. Class: The class of a record, which defines an independent namespace. For all our

purposes, we fix the class to IN (for Internet), which is the most commonly used class,

though the techniques I present are applicable to others as well.

4. Time To Live (TTL): The TTL describes how long a RR can be cached by resolvers

and others querying the records before it should be discarded and queried again.

5. Rdata: The type-specific data, such as the IP address for address records, text

information for TXT records.

The namespace database tree is divided into a large number of zones using “cuts”. Cuts

(separation) in the namespace can be made between any two adjacent nodes. After all cuts

are made to the namespace, each group of connected namespace is a separate zone. A zone is

a collection of records that share a common end domain name. For example, the uni.edu zone

has only records ending with uni.edu. There is a cut between cs and uni nodes, effectively

causing the cs.uni.edu to be a new zone as shown in Figure 2.1. The zone cut is also evident
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from the zone file as there are NS records for cs.uni.edu naming the nameservers for the cs

subzone.

DNS supports many record types [Aut22], including records for IP addresses, text records,

domain aliases, delegation records, and more. Table 2.1 shows a few example records in the

zone file of uni.edu zone. Here, the domain name uni.edu is called zone domain or zone apex

for this zone file. When a domain name is shown as part of a zone file without the trailing .,

then it is considered as a relative domain, and the zone domain is appended to it to form the

complete domain. We describe each record type behavior for record types frequently used

through out this thesis.

• SOA (start of Authority) [Moc87b] - Each zone file will have exactly one record of this

type which contains administrative information about the zone. The name field will

be the name of the zone. The rdata field of the record has several sub-fields like the

primary server responsible for the zone (ns1.com), the email address of the administrator

responsible for the zone (admin is a relative domain name and should be treated as

admin.uni.edu; therefore the email address is admin@uni.edu), followed by five integers

that specify several timers relating to refreshing the zone.

• A (address) [Moc87b] - This is the most commonly used record type, which is used to

map the domain name specified by the record’s name field to a 32-bit IPv4 address.

• AAAA (quad A) [KHT03] - Similar to the A record type, AAAA is used to obtain an IPv6

address for a given domain name.

• TXT (text) [Moc87b] - This record type is used to provide any additional information

about a domain name like site verification, framework policies, etc.

• NS (name server) [Moc87b] - This record type specifies which nameserver is authoritative,

i.e., has the information for the namespace specified in the name field of the record.

To obtain any information for the computer science domain (cs.uni.edu) or any of its

24



subdomains, one needs to contact the server mentioned in the rdata field of the record

(n.cs.uni.edu).

• CNAME (canonical name) [Moc87b] - A record type that maps one domain name (an

alias) in the name field to another domain name (the canonical name) specified in the

rdata field. A common example is the www subdomain which is provided as an alias

to the zone domain name - users accessing www.uni.edu are referred to the zone apex

“uni.edu”.

• DNAME (domain redirection or delegation name record) [RW12a] - A DNAME record creates

an alias for an entire subtree of the domain name tree, whereas the CNAME record creates

an alias for a single name and not its subdomains. Zone administrators may want

subtrees of ee.uni.edu and elec.com to contain the same information in DNS, in which

case they can use a DNAME record.

If a nameserver uses a CNAME or DNAME record to respond to a query then the query is

first rewritten into a new one. Consider the CNAME and DNAME records in Table 2.1. For the

CNAME to apply, the input query domain name has to be the same as the CNAME record name

(www.uni.edu), and the content of the record completely replaces the query name (uni.edu).

For a DNAME to apply, on the other hand, the query domain name must be a subdomain (for

example, x.y.ee.uni.edu.) of the name in the DNAME record (ee.uni.edu). The new query will

preserve the subdomain and replace the ending part that matches the DNAME record name

(producing the new query name x.y.elec.com.). The DNAME record’s ability to rewrite the

ending part of the query, regardless of what comes before it, turns out to be surprisingly

powerful.

2.2.1 Glue Records

A zone file should typically not have any resource records below a zone cut [HSF19]. The

example uni.edu zone file shown in Table 2.1 shows a zone cut at cs.uni.edu; the zone should
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not have any records below it. DNS implementations should ignore such records even if such

records are present in a user-provided zone file. Users should contact the computer science

nameserver for any information about the cs sub-space. However, this leads to a circular

dependency as the nameserver for cs.uni.edu is n.cs.uni.edu, which is in the cs sub-space,

so contacting it to resolve its own name is not possible. To resolve this dependency in the

in-domain nameserver instances, the zone file needs to have glue records to avoid failure

of name resolution [Moc87a]. A glue record is an IPv4 or IPv6 record of the in-domain

nameserver (n.cs.uni.edu) added to the zone file to help resolve DNS nameservers.

In-domain glue records and delegation records are not part of the authoritative records

of the zone. The authoritative data for a zone is simply all of the RRs attached to all of

the nodes from the top node (or apex) of the zone down to leaf nodes or nodes above cuts

around the bottom edge of the zone [Moc87a]. A nameserver can return the glue records to

the resolver only when returning the corresponding delegation NS records. Suppose the user

sends a query for n.cs.uni.edu to the nameserver, which has the uni.edu zone file shown in

Table 2.1. In that case, the nameserver should return the NS record since the queried name

is below a zone cut, and additionally, return the glue A record and mark both the records

as not authoritative. The nameserver should not return the A record alone, in which case,

it signifies an authoritative response (and is wrong). Even though it has the IP address for

n.cs.uni.edu, the resolver should technically contact the n.cs.uni.edu nameserver using the

glue IP address to get an authoritative response. This is because the glue record is a hint or

suggestion to avoid circular dependency and the actual records are with the n.cs.uni.edu

nameserver.

2.2.2 Empty Non-Terminals (ENTs)

Empty non-terminals are domain names that own no resource records but have subdomains

that do own records [HSF15]. In the uni.edu zone file shown in Table 2.1, the domain

name b.uni.edu has no resource records in the zone file, but its subdomain q.b.uni.edu has
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an IPv6 record. Implementations must handle ENTs properly; otherwise, it can lead to

unexpected behaviors. If the query name is b.uni.edu, then the nameserver implementations

must respond with an empty response but with no-error code (NOERROR). The nameserver

should not respond with a non-existent NXDOMAIN error code, as it signals that the query

name and its subdomains do not exist, which is incorrect [BH16].

2.3 Nameservers and Query Resolution

As mentioned in the introduction, a distributed collection of organizations manage the

zones and provide the translation service through publicly accessible DNS servers, called

nameservers, which are in turn identified by a domain name. Each nameserver serves

one or more zones. Multiple servers also serve the same zone to ensure redundancy and

availability. For example, the ucla.edu zone is available from servers like ns1.dns.ucla.edu,

ns2.dns.ucla.edu, ns3.dns.ucla.edu, and ns4.dns.ucla.edu. Each nameserver can provide

the data requested for a domain name directly or point to other nameservers. The user sends

requests for information in the form of DNS queries which have three parts - (a) the resource

target domain name, (b) the type of the resource, and (c) the class of the resource. For our

purposes, the class is IN always, so the query is considered as a 2-tuple.

When a query arrives at a nameserver, it first checks the available zones to select the

best matching zone and then uses the best matching records from that zone to answer the

query [RW12a]. If no matching records are found, the nameserver returns an empty response

with a non-existent domain (NXDOMAIN) error code signaling that the query domain name and

any subdomains do not exist. If the selected best records are of type A or AAAA or TXT, then

the resolver which sent the query gets the intended response. If the nameserver responds

with an NS record, then the resolver must contact another nameserver. If there is a glue

record associated with the NS record, then it is also returned along with the delegation record.

The original query is rewritten if the best records are of type CNAME or DNAME. The rewrite
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semantics of both the types were explained in the previous section with an example. After

a rewrite, the nameserver first checks if it can resolve the new query. It restarts the query

resolution process if it can; otherwise returns the rewritten query to the resolver.

2.4 Wildcard Resource Records

The resource records whose name starts with an asterisk label “∗” are given special treatment

and are called wildcard resource records. Wildcard RRs can be thought of as instructions

for synthesizing RRs. When the appropriate conditions are met, the nameserver creates

RRs with an owner name equal to the query name and contents taken from the wildcard

RRs [Moc87a]. At the highest level, the wildcard RRs match a query domain name that are

not matched by other records in the zone.

The “appropriate conditions met” clause is nuanced and intricate. I will describe it with

the help of several example input queries to a nameserver serving the uni.edu zone file shown

in Table 2.1 which has a wildcard text record (∗.uni.edu):

• ⟨n.uni.edu, TXT⟩ - The nameserver uses the wildcard record for synthesis as there is no

n.uni.edu record in the zone file. The nameserver synthesizes a new record using the

wildcard record - "n.uni.edu TXT “Awesome”". The user is oblivious that the returned

resource record is a synthesized record.

• ⟨∗.uni.edu, TXT⟩ - The nameserver returns the wildcard record as is without any synthesis

as the query name matches exactly with the wildcard name. This should not be

considered as a wildcard match, but rather an exact match.

• ⟨n.uni.edu, A⟩ - The query name matches the wildcard record but cannot be used for

synthesis as the queried type does not match with record type.
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• ⟨x.y.z.uni.edu, TXT⟩ - The nameserver uses the wildcard record for synthesis. The

wildcard label, “∗” can match any number of labels, on the condition that all the labels

in the wildcard record after “∗” are the same in the query domain name.

• ⟨x.a.uni.edu, TXT⟩ - The query name matches the wildcard record but the wildcard

record cannot be used for synthesis because a.uni.edu exists in the zone file.

• ⟨x. ∗ .uni.edu, TXT⟩ - The nameserver cannot use the wildcard record because ∗.uni.edu
exists in the zone file. To have a wildcard synthesis for this query, the zone file should

have a wildcard record with the name ∗. ∗ .uni.edu.

For further detailed description of the wildcard records, the interested reader may refer

the RFC 4592 [Lew06].
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CHAPTER 3

DNS Formal Model

As mentioned in Section 1.4.1, we must first formalize the behavior of DNS to verify it

exhaustively and to develop tools with solid correctness guarantees. This chapter provides

formal, mathematical semantics for DNS, including both nameserver lookup and recursive

resolution. I start by defining domain names, zones, resource records, DNS queries, answers,

and record priority for a query using the mathematical notation in Section 3.1. In Section 3.2,

I provide several constraints a zone file must satisfy to be considered a well-formed zone file.

The DNS formal semantics are described in Section 3.3.

3.1 Definitions and Notations

In this section, I define the concepts explained in English and through examples in Chapter 2

in a formal notation using mathematical symbols. This helps avoid the ambiguity of the

natural language and provides a precise way of understanding the semantics.

3.1.1 Domain Names

The DNS namespace which is a tree-like hierarchy naturally forms a partial order for domain

names. For example, we say that uni.edu is the parent of cs.uni.edu, and accordingly

cs.uni.edu is a child of uni.edu. Further, we consider cs.uni.edu, uni.edu and edu to be

prefixes of cs.uni.edu. We model a domain name as a sequence of zero or more labels. The

domain name uni.edu contains the labels uni, edu, and an implicit empty label (ϵ) for the
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(1) Domain prefix match
d1 ≃j d2

def
= (0 ≤ j ≤ min(|d1|, |d2|)) ∧ (∀i. 0 < i ≤ j =⇒ d1[i] = d2[i])

(2) Maximal prefix match
max≃(d1, d2)

def
= max {j | d1 ≃j d2}

(3) Domain partial order
d1 ≤ d2

def
= d1 ≃|d1| d2

(4) Domain wildcard match
d1 ∈∗ d2

def
= (|d2| ≤ |d1|) ∧ (d1 ≃(|d2|−1) d2) ∧ d1[|d2|] ̸= ∗ = d2[|d2|]

(5) Resource record matches query
Match(r, q) def

= dn(r) ≤ dn(q) ∨ dn(q) ∈∗ dn(r)

(6)
Resource record Rank
Rank(r, q, z) def

= ⟨I (Match(r, q)) , I (ty(r) = NS ∧ dn(r) ̸= dn(z)) ,
max≃(dn(r), dn(q)), I (dn(q) ∈∗ dn(r))⟩

(7) Resource record order
r1 <q,z r2

def
= Rank(r1, q, z)� Rank(r2, q, z)

Figure 3.1: Common DNS definitions, and notations.

root domain. For clarity, we often write a domain name as a concatenated sequence of labels

delimited by ◦ and terminated by the special symbol ϵ, which represents an empty string

(e.g., uni.edu is written as uni ◦ edu ◦ ϵ). The sequence with only the empty domain name

(ϵ) is called the root domain. Given a domain d = lk ◦ . . . ◦ l0 where l0 = ϵ, we write |d| to

denote the index of the last label k, and we use the indexing notation d[i] to select label li.

We denote the set of valid domain names by the set: DOMAIN.

Figure 3.1 shows a number of definitions that we use to define the behavior of DNS.

Specifically, we use the notation d1 ≃j d2 (1) to mean that domains d1 and d2 share a common
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prefix of j labels (not counting ϵ). For example, uni ◦ edu ◦ ϵ ≃1 edu ◦ ϵ. To select the

maximal j such that d1 ≃j d2, we write max≃(d1, d2) (2). We use the definition of ≃j to

introduce a partial ordering among domain names (3) that orders them by longest match. In

particular, d1 ≤ d2 iff d1 is a prefix of d2 (d1 ≃|d1| d2). We use the notation d1 ∈∗ d2 to mean

that d1 matches the wildcard domain d2 (4). A domain name d1 matches a wildcard domain

d2 if three conditions are met: (a) d2 is of same length or shorter than d1, (b) d1 has the same

labels as in d2 after the “∗” label, and (c) d1 does not have a “∗” in the same position where

d2 has the wildcard “∗”. There is a subtle difference between wildcard matching and synthesis.

We can decide whether a wildcard domain matches a domain name using the wildcard record

alone, whereas whether the nameserver will use that wildcard record for synthesis to respond

to a query depends on the other resource records in the zone file. Section 2.4 provides some

examples for wildcard record matching and synthesis.

3.1.2 Zones and Resource Records

A DNS zone z ∈ ZONE is a set of resource records (ZONE = P(RECORD)). We use the symbol

P(RECORD) here to represent the powerset of resource records. A zone is well-formed if it

contains exactly one SOA (Start of Authority) record listing the domain name of the zone

along with other administrative information. Section 3.2 lists other conditions a well-formed

zone has to satisfy. We write dn(z) to mean the domain name for a zone z, which is stored

in this SOA record.

We model a resource record r ∈ RECORD = ⟨d, t, τ, a, b⟩ as a tuple with

five components: (a) a domain name d ∈ DOMAIN, (b) a record type

t ∈ TYPE = {A, AAAA, MX, NS, DNAME, CNAME, SOA, . . .} ∪ {N} representing either the

kind of data the record holds (e.g., AAAA for an IPv6 address) or the type N to represent empty

data, (c) the time-to-live value for the record τ ∈ N that defines the number of seconds for

which the record can be cached, (d) the answer a ∈ Σ∗ which gives the DNS result as a string,

and (e) finally a boolean value b (T or F ) that marks whether a record was synthesized from
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another. All the resource records are assumed to be of the IN class, and therefore the class is

not modeled as one of the tuple components.

We explicitly model empty non-terminals [Lew06, Moc87a, HSF15] as resource records

containing the type N to avoid the pitfalls mentioned in Section 2.2.2. We write dn(r) for the

domain name of record r, ty(r) for the type, ttl(r) for the TTL, ans(r) for the record answer,

and synth(r) for whether the record was synthesized.

3.1.3 DNS Queries

A DNS query q = ⟨d, t⟩ is a tuple containing a domain name d ∈ DOMAIN and a query type

t ∈ TYPE. A user that needs the IPv4 address might send a query ⟨www.uni.edu, A⟩ to ask for

it. As with resource records, we write dn(q) to mean the domain name of query q, and ty(q)

to mean the query type.

3.1.4 DNS Answers

We model a DNS answer a = ⟨x, y⟩ as a pair of a tag x ∈
{Ans,AnsQ,Ref,NX,Refused,ServFail}, and data y. Each tag indicates the

type of answer and is described below:

• Ans (Answer): The nameserver returns a set of resource records after the query lookup.

The data y of the answer would have resource records R holding pertinent information

to the query.

• AnsQ (Answer + Query Rewrite): The nameserver rewrites the query using a set of

resource records R resulting in the new query q′. The data y field of the answer, in this

case, would be a pair ⟨R, q′⟩.

• Ref (Referral): The data y of the answer is a set of delegation (NS and glue) resource

records R indicating the query is delegated to other nameservers.
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• NX (NXDOMAIN): The nameserver does not return any records (y = ∅), but indicates

that the queried domain does not exist with this tag.

• Refused (Refused): The nameserver refuses to respond to the query as there is no

relevant zone file (y = ∅).

• ServFail (Server Failure): There is no nameserver available to handle the query, and

the DNS is assumed to return a failure message with this tag (y = ∅).

The answer contains a set of resource records because multiple records might be relevant for

a query (e.g., there might be multiple NS records for a domain).

3.1.5 Resource Record Priority for a Query

The remaining definitions (5) – (7) in Figure 3.1 are used to define the order in which DNS

prioritizes resource records for a given query. Match (5) determines if a record is relevant

for a given query (i.e., a potential match). A resource record is relevant for a query if the

domain name of the record is a prefix of the query domain name, or the record is a wildcard

record and the query domain name matches the wildcard domain. The Rank (7) function for

a record, query, and zone returns a tuple of integer values; the indicator function (I) returns

1 if the predicate is true and 0 otherwise. The Rank function then induces a strict partial

order (<q,z) on records (7) by comparing the resulting tuples lexicographically from left to

right (�). The ranking is over four values:

1. whether the record is a match for the query (note that there will always be at least one

match, e.g., the SOA record for queries that are not refused by the server (Section 3.3.1)

2. if there is a zone cut (i.e., an NS record for a subdomain)

3. the length of the match between record and query

4. finally whether it is a wildcard match as a tiebreaker.
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The first condition ensures that a nameserver uses only matching records to create an

answer for the input query. The second condition is necessary for avoiding returning glue

records, as authoritative records as the zone cut NS records take priority in those cases

(Section 2.2.1 explains it with the help of an example). The third condition allows selecting

the record with the most number of labels in common with the query. The final condition

prioritizes a wildcard match when everything else is the same.

3.2 Zone Well-formedness Constraints

A collection of resource records R is considered as a well-formed zone z if it satisfies all of

the following conditions:

(1) There should be exactly one SOA record.

| {r ∈ R | ty(r) = SOA} | = 1

(2) No record can be a synthesized one.

⟨d, t, τ, a, b⟩ ∈ R =⇒ b = F

(3) The domain name of the SOA record should be a prefix of the domain name of all the

records in R.

⟨d, SOA, τ, a, b⟩ ∈ R ∧ ⟨d′, t, τ ′, a′, b′⟩ ∈ R =⇒ d ≤ d′

(4) The answer of a CNAME, DNAME and an NS record should be a valid domain name.

⟨d, t, τ, a, b⟩ ∈ R ∧ t ∈ {CNAME, DNAME, NS} =⇒ a ∈ DOMAIN

(5) There can be only one CNAME record for a domain name.

⟨d, CNAME, τ, a, b⟩ ∈ R ∧ ⟨d, CNAME, τ ′, a′, b′⟩ ∈ R =⇒ τ = τ ′ ∧ a = a′ ∧ b = b′

(6) If there is a CNAME record for a domain name, then there cannot be any other record

type for that domain name.

⟨d, CNAME, τ, a, b⟩ ∈ R ∧ ⟨d, t, τ ′, a′, b′⟩ ∈ R =⇒ t = CNAME
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(7) There can be only one DNAME record for a domain name.

⟨d, DNAME, τ, a, b⟩ ∈ R ∧ ⟨d, DNAME, τ ′, a′, b′⟩ ∈ R =⇒ τ = τ ′ ∧ a = a′ ∧ b = b′

(8) A domain name cannot have both DNAME and NS records unless there is an SOA record.

⟨d, DNAME, τ, a, b⟩ ∈ R ∧ ⟨d, NS, τ ′, a′, b′⟩ ∈ R =⇒ ⟨d, SOA, τ ′′, a′′, b′′⟩ ∈ R

(9) If there is a DNAME record for a domain name d, then there cannot be any records with

domain names for which d is a proper prefix.

⟨d, DNAME, τ, a, b⟩ ∈ R ∧ ⟨d′, t, τ ′, a′, b′⟩ ∈ R ∧ d ̸= d′ =⇒ d ̸≤ d′

(10) If there is an NS record for a domain name d but not an SOA record, then there cannot

be any NS records for domain names for which d is a proper prefix.

⟨d, NS, τ, a, b⟩ ∈ R∧¬∃ τs, as, bs. ⟨d, SOA, τs, as, bs⟩ ∈ R∧⟨d′, t, τ ′, a′, b′⟩ ∈ R∧ d < d′ =⇒
t ̸= NS

(11) Wildcard domain names can not have a DNAME or an NS record.

⟨d, t, τ, a, b⟩ ∈ R ∧ d[|d|] = ∗ =⇒ t ̸= DNAME ∧ t ̸= NS

(12) The set of resource records R are prefix-closed for the domain name of the zone i.e.,

if there is a resource record whose domain name d is different from the domain name

of the SOA record, then there has to be a resource record whose domain name d′ is a

proper prefix of d and is of length one less. (A real zone file can be made to satisfy this

requirement by adding resource records for the empty non-terminals with the type N we

introduced earlier.)

⟨d, t, τ, a, b⟩ ∈ R ∧ ⟨ds, SOA, τs, as, bs⟩ ∈ R ∧ d ≠ ds =⇒ ∃⟨d′, t, τ, a, b⟩ ∈ R ∧ d′ <

d ∧ |d′| = |d| − 1

3.3 DNS Semantics

Given these definitions, we now formally define how DNS resolves user queries.
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We model the DNS system as a 4-tuple, C = ⟨S,Θ,Γ,Ω⟩, called a configuration C, where:

• S is a set of nameservers (e.g., n.cs.uni.edu). We leave nameservers as opaque objects

and associate them with other information through functions.

• Θ ⊆ S is a set of “root” nameservers for S.

• Γ : S → P(ZONE) is a function from a nameserver to the zones for which that nameserver

is authoritative.

• Ω : D → S ∪ {⊥} is a function from a domain name to the nameserver identified by

that name or ⊥ if no corresponding nameserver exists.

We define the semantics of DNS in two parts: first we define how a single authoritative

nameserver processes a query locally, and then using this formulation, we define DNS

resolution.

3.3.1 Authoritative Nameserver semantics

Given a set of zone files Z and a query q, the definition of ServerLookup at the bottom of

Figure 3.2 defines the lookup performed at a nameserver for the query. The result of this

lookup is a DNS answer. The first step is to find the zone z that has the longest matching

prefix (dn(z)) with the domain in the query (dn(q)) — the function N . The notation maxdn

selects those zones with maximal domain names according to the domain name partial order,

among those that are prefixes of the query domain name. For example, if a nameserver

has zone files for com and gmail.com and the user’s query is for help.gmail.com, then the

nameserver will choose the gmail.com zone to answer the query. If there is such a matching

zone z, then ServerLookup calls ZoneLookup to get an answer by evaluating the query

against the zone file. Otherwise, the nameserver refuses (Refused) to perform the lookup

operation as it could not find a relevant zone. The function N returns not more than one

zone file as the nameserver cannot have two zone files with the same zone domain.
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Resource Record Set Lookup P(RECORD) × QUERY × ZONE → ANSWER

RRLookup(R, q, z) =



ExactMatch(R, q, z, T ) dn(R) = dn(q)

WildcardMatch(R, q, T ) dn(q) ∈∗ dn(R)

Rewrite(R, q) dn(R) < dn(q), DNAME ∈ T

Delegation(R, z) dn(R) < dn(q), DNAME ̸∈ T,

NS ∈ T, SOA ̸∈ T

⟨NX, ∅⟩ otherwise
where T = {ty(r) | r ∈ R}

ExactMatch(R, q, z, T ) =



⟨Ans, T (R, ty(q))⟩ Authoritative(T ), ty(q) ∈ T

⟨AnsQ, ⟨R, ⟨ans(r), ty(q)⟩⟩⟩ Authoritative(T ), ty(q) ̸∈ T,

CNAME ∈ T, R = {r}
Delegation(R, z) ¬Authoritative(T ), NS ∈ T

⟨Ans, ∅⟩ otherwise

WildcardMatch(R, q, T ) =


⟨Ans,Syn (T (R, ty(q)), dn(q))⟩ ty(q) ∈ T

⟨AnsQ, ⟨Syn(R,dn(q)), ⟨ans(r), ty(q)⟩⟩⟩ ty(q) ̸∈ T,R = {r},
CNAME ∈ T

⟨Ans, ∅⟩ otherwise

T (R, t) = {r ∈ R | ty(r) = t}
Rewrite(R, q) = ⟨AnsQ,DProc (T (R, DNAME), q)⟩

Authoritative(T ) = NS /∈ T ∨ SOA ∈ T

Delegation(R, z) = ⟨Ref,Glue(T (R, NS), z)⟩
DProc({r}, q) = ⟨{r} ∪ {⟨dn(q), CNAME, ttl(r), d, T ⟩}, ⟨d, ty(q)⟩⟩

where d = dn(q)[dn(r) 7→ ans(r)]

Glue(R, z) = R ∪ {r ∈ z | ∃ r′ ∈ R. ans(r′) = dn(r) ∧ ty(r) ∈ {A, AAAA}}
Syn(R, d) = R ∪ {⟨d, t, τ, a, T ⟩ | ∃ d′. ⟨d′, t, τ, a, F ⟩ ∈ R}

Nameserver lookup for a query P(ZONE) × QUERY → ANSWER

ServerLookup(Z, q) =

{
ZoneLookup(z, q) N (Z, q) = {z}
⟨Refused, ∅⟩ N (Z, q) = ∅

N (Z, q) = maxdn {z ∈ Z | dn(z) ≤ dn(q)}
ZoneLookup(z, q) = RRLookup({r ∈ max<q,z z}, q, z)

Figure 3.2: Authoritative DNS lookup semantics.
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ZoneLookup selects the appropriate resource records r for the zone z by choosing the

maximal elements with respect to the query (<q,z) as defined in equation (7) in Figure 3.1.

The set of records passed to RRLookup will necessarily have the same domain name, i.e.,

dn(r1) = dn(r2) for any r1, r2 in the set. However their types may differ. Thus, for such

a set R, we simply write dn(R) to refer to the domain name for elements in this set. The

RRLookup function takes a set of resource records R and a query q along with the zone z

and produces an answer. The goal of RRLookup is to return either:

• an answer (Ans), if the resource records R are sufficient to answer the query q

• a referral (Ref), if records R cannot answer the query q but indicate who might have

the answer

• an intermediate answer r′ and a query q′ (AnsQ), if the resource records R establish

that the query q would be modified to query q′ due to the resource record r′

• an error message (NX), indicating that the domain does not exist.

RRLookup implements the DNS resolution process described as the server algorithm in

RFC 6672 [RW12a]. Note that we exclude a few steps of the server algorithm since the formal

model does not capture dynamic elements like caches. The search for the nearest zone to

the query is captured by N stated earlier. When the records’ domain name exactly matches

the query, the ExactMatch function is applied. Otherwise, if it is a wildcard domain that

matches the query domain, the WildcardMatch case will apply. If the records contain a

matching DNAME record, which is only possible when the other two cases do not apply, then

the query will be modified according to the Rewrite function. If no such record exists, DNS

will delegate the query to another nameserver if it has an NS record (Delegation). Finally,

if all else fails, the nameserver will return NXDOMAIN (non-existent domain).

The ExactMatch and WildcardMatch cases are both broken down further into

several cases. For the ExactMatch case, if there is an authoritative record with the same
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type as the query, then the nameserver will simply return this record. Of all the records

passed to RRLookup, a zone z is authoritative for all the records except for NS records

(zone cut) not accompanied by an SOA record and the glue records (Section 2.2.1). Otherwise,

if there is a CNAME record, then the nameserver will perform a rewrite (AnsQ), returning the

relevant records R, as well as a new query domain given by ans(q) with the same type (ty(q)).

If there is no CNAME record, but there is a non-authoritative NS record, then the nameserver

will perform a Delegation. Finally, if all else fails, it will simply return an answer with no

information (∅).

The WildcardMatch case is similar to the ExactMatch case, except it will perform

synthesis (Syn) to generate a new set of records specializing the wildcards. For instance,

a lookup for a query with domain email.com on a set with a single wildcard record ∗.com
generates a (cachable) synthesized record for email.com.

The Rewrite case for DNAME records returns AnsQ with a tuple containing (a) the

DNAME record and a synthesized CNAME record, and (b) a new, rewritten query. The

new query is given by DProc, which generates and adds a new synthesized CNAME

record for the answer and substitutes the matching prefix of the query with the rewrite

described in the record answer (dn(q)[dn(r) 7→ ans(r)]). For example, RRLookup of

({r1 = ⟨ee ◦ uni ◦ edu ◦ ϵ, DNAME, 500, elec ◦ com ◦ ϵ, F ⟩}, ⟨foo ◦ ee ◦ uni ◦ edu ◦ ϵ, A⟩, z)
will return ⟨AnsQ, ⟨R′, ⟨foo ◦ elec ◦ com ◦ ϵ, A⟩⟩⟩, where R′ = {r1} ∪
{⟨foo ◦ ee ◦ uni ◦ edu ◦ ϵ, CNAME, 500, foo ◦ elec ◦ com ◦ ϵ, T ⟩}. The new query name

would be the answer field of the CNAME record, which is obtained by substituting the matching

prefix (ee ◦ uni ◦ edu ◦ ϵ) of the original query (foo ◦ ee ◦ uni ◦ edu ◦ ϵ) with the answer

field (elec ◦ com ◦ ϵ) of the DNAME record. The DNS adds these CNAME records to the answer

to facilitate caching — future queries are rewritten based on the cached CNAME record. The

Delegation case returns the NS records along with the necessary A and AAAA glue records.
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DNS resolution QUERY × CONFIG × N → P(ANSWER)

Resolve(q, ⟨S,Θ,Γ,Ω⟩, k) = ⋃
s∈Θ Resolve(s, q, ⟨S,Θ,Γ,Ω⟩, k)

Resolve(s, q, ⟨S,Θ,Γ,Ω⟩, k)

=︷ ︸︸ ︷
{⟨ServFail, ∅⟩} s = ⊥ ∨ k = 0

Resolve(q′, ⟨S,Θ,Γ,Ω⟩, k − 1) s ̸= ⊥, k > 0, a = ⟨AnsQ, ⟨R, q′⟩⟩, N (Γ(s), q′) = ∅
Resolve(s, q′, ⟨S,Θ,Γ,Ω⟩, k − 1) s ̸= ⊥, k > 0, a = ⟨AnsQ, ⟨R, q′⟩⟩, N (Γ(s), q′) ̸= ∅⋃

r∈T (R,NS) Resolve() s ̸= ⊥, k > 0, a = ⟨Ref, R⟩
{a} otherwise

where a = ServerLookup(Γ(s), q)

Figure 3.3: DNS Recursive resolution semantics.

3.3.2 Recursive Resolution Semantics

Now that we have formally defined how a nameserver answers a query q, we can use this

definition to formalize the process of recursive resolution (Figure 3.3) explained earlier with

an example in Section 1.1. We define two functions named Resolve that return a set of

possible answers. The functions return sets of answers in order to capture the nondeterminism

inherent in DNS. The first function takes a query q, a configuration ⟨S,Θ,Γ,Ω⟩, and a fuel

parameter k, which is used to imitate the mechanism used by DNS to ensure that resolution

terminates. The function works by resolving the query q at each root nameserver s ∈ Θ,

taking the union of their results.

The second Resolve function performs resolution at a specific nameserver s. There are

several cases based on the result of ServerLookup. In the first case, if the resolver has

already exceeded the execution bound k or the input is a ⊥ due to a nameserver lookup failure

in Ω from a recursive call of Resolve, it returns ServFail with no records. Otherwise,

if s returns a rewrite AnsQ and does not have a local zone that can process the rewrite
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(N (Γ(s), q′) = ∅), then DNS resolves the new query q′ starting over at the root. If there is a

local zone at s, then it processes q′ at s. If s returns a referral Ref, then the function unions

the results from nondeterministically resolving the query at each nameserver identified in

the returned NS records (Ω(ans(r))). Finally, if ServerLookup returns any other kind of

answer, Resolve simply returns that answer ({a}).
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CHAPTER 4

Finding RFC Compliance Bugs in DNS Nameservers via

Automatic Test Generation

Writing an efficient, high-throughput, multithreaded DNS nameserver implementation that

is also bug-free and compliant with the multiple DNS RFC specifications is difficult and

challenging. As a result, nameserver implementations frequently suffer from incorrect or

implementation-specific behavior that causes outages [Fry14, Tun19, Yor15], security vulner-

abilities [Kov18, Ras16], and more [Bin22, Pow22, NSD22].

In this chapter, I present the first approach for identifying RFC compliance (protocol

implementation) errors in DNS nameserver implementations, by automatically generating

test cases that cover a wide range of RFC behaviors. The key technical challenge is the fact

that a DNS test case consists of both a query and a zone file, which is a collection of resource

records that specify how queries should be handled. Zone files are highly structured objects

with various syntactic and semantic well-formedness requirements, and the query must be

related to the zone file for the test even to reach the core query resolution logic.

Existing standard automated test generation approaches are not suitable for our needs,

as illustrated on the top of Figure 4.1. Fuzz testing is scalable but has well-known challenges

in navigating complex semantic requirements and dependencies [GKL08, CC18], which are

necessary to generate behavioral tests for DNS. As a result, fuzzers for DNS only generate

queries and hence are used only to find parsing errors [Pat22, Foo15, Cam19, St10]. Symbolic

execution [Kin76] can, in principle, generate DNS tests that achieve high code coverage but, in

practice, suffers from the well-known problem of “path explosion” [CDE08, GKL08, CC18] that
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(a) Fuzz testing (b) Symbolic execution

(c) SCALE

bug! bug!

bug!

inputs

configs

𝑞1, 𝑞2, 𝑞3, …

DNS implementation (E.g., BIND)
DNS logical model 
from RFCs

Figure 4.1: Overview of different automated testing approaches. Tested implementation paths are shown

in red. (a) Fuzz testing is scalable but is often unable to navigate complex input requirements. (b)

Symbolic execution can solve for input conditions but suffers from path explosion and has difficulty with

complex data structures and program logic, and will thus only typically explore a small subset of possible

program paths. (c) SCALE uses a logical model of the DNS RFCs to guide symbolic search toward many

different logical behaviors.

limits scalability and coverage. As a result, symbolic execution has only been used to identify

generic errors like memory leaks in individual functions within nameserver implementations,

again avoiding the need to generate zone files [RE15].

My approach to automated testing for DNS nameservers, which I call SCALE (Small-

scope Constraint-driven Automated Logical Execution), jointly generates zone files and the

corresponding queries, does so in a way that is targeted toward covering many different RFC

behaviors, and is applicable to black-box DNS nameserver implementations. The key insight

underlying SCALE is that we can use the existing RFCs to define a model of the logical

behaviors of the DNS resolution process and then use this model to guide test generation.
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SCALE symbolically executes a program version of the formal semantics of DNS described

in Chapter 3 to generate well-formed tests for black-box DNS nameservers — each test

consisting of a well-formed zone file and a query that together cause execution to explore a

particular RFC behavior.

Symbolic execution of our logical model is still fundamentally unscalable — there are an

unbounded number of possible execution paths, they grow exponentially in the size of the

zone file, and expensive constraint solvers must be used to generate a test case for each path.

I therefore bound the generated zone files to contain a very small number of resource records

and short domain names — a maximum of 4 for each of these in our experiments, which is

much smaller than real-world zone files. However, I provide experimental evidence of the

existence of a small-scope property [Jac02], meaning that many interesting behaviors can be

covered with small tests. First, each return point in our logical model can be reached with a

test where the length of domain names and the number of records in the zone file is at most

3. Each return point represents a distinct RFC-specified scenario for DNS resolution (e.g., a

particular flavor of query rewrite). Second, while increasing this constant from 2 through 4

increased the number of errors that the tool identified, no new errors were found in a sample

of paths that required size 5. This finding makes sense because, while zone files can contain

a large number of records, the number of records that are relevant to any particular query

tends to be small.

I have used the SCALE approach as the basis for a tool called Ferret1 for automated

testing of DNS nameserver implementations (Figure 4.2). Ferret generates tests using

our logical model, which we have implemented in a modeling language called Zen [BM20]

that has built-in support for symbolic execution. Ferret then performs differential testing

by running these tests on multiple DNS nameserver implementations and comparing their

results to one another. In this way Ferret can identify RFC violations, crashes, as well as

situations where the RFCs may be ambiguous or underspecified, leading to implementation-

1 Ferret: https://github.com/dns-groot/Ferret
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Test GeneratorRFC Model

NsdBind . . .
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✓ Fingerprintingsingle group >1 group

Figure 4.2: Ferret system architecture

dependent behavior. Because DNS implementers strive for behavioral consistency among their

implementations [Pel20], any test that produces divergent results among the implementations

represents a likely error. However, there can be orders-of-magnitude fewer root causes than

divergent tests, so as a final step we provide a simple but effective technique to help users with

bug deduplication. I create a hybrid fingerprint for each test, which combines information

from the test’s path in the Zen model with the results of differential testing, and then group

tests by fingerprint for user inspection.

Using Ferret, in just a few hours I generated over 12.5K valid test cases2 with a maximum

zone-file size of 4 records. Running these tests on 8 different open-source DNS nameserver

implementations, I found that the implementations’ behaviors only completely agreed on 35%

of the tests. Our fingerprinting technique reduced the remaining cases to roughly 75 groups.

Because my executable model includes a specification of the well-formedness conditions for

zone files, I also leveraged Zen to systematically generate zone files that violate one of these

conditions (detailed in Section 4.3). I generated 900 invalid zone files of which 184 resulted

in some difference among implementations.

Inspecting tests from each fingerprinted group resulted in the discovery of 30 unique bugs

across the different implementations. Developers have confirmed all of them as actual bugs

2 Test cases: https://github.com/dns-groot/FerretDataset
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and fixed 21 of them, at the time of writing. The most severe bug Ferret found was a

subtle combination of zone file and query that an attacker could easily use to crash both

Bind nameservers and resolvers remotely. I engaged in a secure disclosure process, after

which the developers fixed the issue and then publicly disclosed the vulnerability, through a

CVE (CVE-2021-25215) [GKD21, Dat21] rated with high-severity.

In summary, I make the following major contributions:

(§ 4.2) I present the first automated approach to identifying RFC violations in black-box

DNS nameservers. A unique feature of my approach, SCALE, is the joint generation

of zone files and queries to produce high-coverage behavioral tests.

(§ 4.4) I describe an implementation of my approach in Ferret that combines SCALE with

differential testing.

(§ 4.4) I present a novel fingerprinting approach for bug deduplication that takes advantage

of my RFC model to help triage bugs.

(§ 4.5) I present an evaluation from testing 8 different open-source DNS nameserver imple-

mentations with tests generated by Ferret consisting of over 13.5K zone files, which

resulted in the discovery of 30 new unique bugs and no false positives. Section 4.6

explain some of the bugs Ferret found and the positive responses from developers

of different DNS implementations on my bug reports.

4.1 Finding DNS Errors with Ferret

The goal of Ferret is to automatically generate high-coverage query and zone file inputs

to find behavioral errors in DNS nameserver implementations. In this section, I illustrate

both the challenges in doing so and Ferret’s capabilities through two example errors that

it automatically found in Bind.
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4.1.1 Bug #1: Bind sibling glue records bug

We have already seen a brief version of the following bug in Section 1.4.2.

Ferret generated the following test case, which identified a previously unknown perfor-

mance bug in Bind [KAK21b].3

campus.edu. SOA ns1.com. admin.uni.edu. 11 600 30 400 500

cs.campus.edu. NS ns1.campus.edu.
ns1.campus.edu. A 1.2.3.4

Query: ⟨www.cs.campus.edu., A⟩

In this test case, the query matches the NS record in the zone file, which delegates the query

to another nameserver, ns1.campus.edu. However, that nameserver happens to be a sibling

of cs.campus.edu (as they are both directly under campus.edu), and the zone file contains a

glue record (Section 2.2.1), for the nameserver’s IP address. Nsd, Knot, and PowerDns

correctly return the NS record along with the glue record, avoiding extra round-trips to

determine the nameserver’s IP address, while Bind returns only the NS record. Returning

the sibling glue record is not compulsory, but our test case exposed two unrelated errors that

can negatively affect the performance of many queries.

After we filed the issue the Bind developers confirmed the bug saying, "This report turns

out to be very interesting..." Briefly, Bind uses a “glue cache” to speed up the identification

of glue records, but it had two bugs. First, if the cache lookup fails, then glue records are

supposed to be searched for in the zone file, but this was not happening. Second, glue records

for siblings domain nameservers were accidentally never searched for at all.

This example illustrates the challenges of identifying nameserver behavior errors. Even

though the zone file has only a few records, they have complex dependencies. First, there

must be a delegation of the query to another nameserver. Second, that nameserver must be

3 Note that we have renamed the labels for all the example bugs for clarity.
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in the same zone. Third, that nameserver must be a sibling domain. Fourth, there must be

a glue record for that domain in the zone. Given these dependencies, it is understandable

that prior testing techniques did not uncover these bugs. Further, by comparing the outputs

from multiple implementations, Ferret is able to identify this test case as potentially buggy

behavior despite receiving a valid response from Bind.

4.1.2 Bug #2: Bind crash

As another, more dire example, consider the following zone file that Ferret generated. The

zone file is invalid due to having two identical records, but Bind, Nsd, and Knot accept the

zone file and make it valid by ignoring the duplicate record.

attack.com. SOA ns1.com. admin.uni.edu. 11 600 30 400 500

attack.com. NS ns1.outside.com.
attack.com. NS ns1.outside.com.

host.attack.com. DNAME com.

Query: ⟨www.cs.campus.edu., A⟩

Ferret generated multiple queries for this zone file (Section 4.3) and the one showed

above caused Bind to crash.

In this test case, the DNAME record is applied to rewrite any queries ending with

host.attack.com to end with just com, so the query that Ferret generated is rewrit-

ten to the new query host.attack.com. The nameservers add the DNAME record and rewritten

query to the response before resolving the new query. The new query exactly matches the

same DNAME record, so implementations are expected to return the current response. All

implementations except Bind behaved as expected. Bind did not respond, and the query

timed out. Inspecting the logs, we found that the server crashed with an assertion failure

due to an attempt to add the same DNAME record to the response twice.
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Attacker

Host attack.com. zone file
1

2
Query for

<host.attack.host.attack.
com., DNAME>

Crashes authoritative nameserver 
instances and takes down other 
customer zone files

DNS Hosting 
Service
E.g., Dyn, Infoblox

3

(a) Attack on a DNS hosting service using Bind nameserver implementation.

𝑞1: <host.attack.com., 
DNAME>

Bind Resolver

attack.com. zone file
Authoritative nameserver
(under attacker control)

1

2
𝑞1

3
DNAME 
record

5
DNAME record
as response

4
cache 
record𝑞2: <host.attack.ho

st.attack.com., 
DNAME>

6

7

Resolver crashes

Attacker

(b) Attack on a public Bind DNS Resolver.

Figure 4.3: DNAME attack targeting the DNS hosting services (a) and the public Bind based recursive

resolvers (b).

This error constitutes a critical security vulnerability. I next describe two scenarios to

show how this failed assertion check can be exploited remotely by an attacker.

Scenario 1 - Attack on a DNS hosting service that uses Bind: DNS hosting services

using Bind’s authoritative nameserver implementation (e.g., Dyn [Inc22]) are vulnerable to

this attack. An attacker can upload the above zone file to the authoritative server instances

through the hosting service. Then, when the above query is requested, the server instances

will crash as shown in Figure 4.3(a). Since a server instance will generally be serving zone

files from multiple customers, such a crash will take down the zones for all customers hosted
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at that nameserver. This provides a method for attackers to trivially and remotely initiate a

denial of service attack against customers hosted by such a service.

Scenario 2 - Attack on a public Bind DNS resolver: In this second scenario, the

attacker can crash any public DNS resolver based on Bind, thereby constituting, as stated

by the Bind security team, an “easily-weaponized denial-of-service vector.” As illustrated

in Figure 4.3(b), the attacker purchases, registers, and controls the attack.com zone and

its authoritative servers. The attacker then simply requests the DNAME record from a public

recursive resolver running Bind, which attempts to fetch the result from the attacker’s

authoritative server. This record is cached, and then the test query is sent to the resolver.

The resolver uses the cached DNAME record and ultimately crashes as described earlier. In

some estimates, Bind accounts for over half of all DNS resolvers in use [KHB15], which

means that attackers could effectively initiate a simple distributed denial of service (DDoS)

attack against the numerous ISPs and public resolvers available to end users.

Disclosure: After discovering the DNAME attack, I initiated a responsible disclosure

procedure with the Bind maintainers. Understanding the attack severity, they requested

that I keep the issue confidential until they worked through their process to patch and then

disclose the bug to the relevant parties in a controlled manner. Bind released a Common

Vulnerabilities and Exposure (CVE-2021-25215) [Dat21, GKD21], with a “high severity”

rating and asked developers and users to upgrade to the patched version. The attack affected

all maintained Bind versions, which in turn affected RHEL, Slackware, Ubuntu, and Infoblox.

4.2 Methodology

In this section I overview my methodology for generating high-coverage tests for DNS

nameserver implementations and discuss how I address several technical challenges.
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D1
Referral

R1 R2

Figure 4.4: Abstract representation of the Authoritative DNS decision tree used to respond to a user

query.

4.2.1 SCALE Approach

As illustrated by the examples in the previous section, the inputs to a DNS nameserver — a

query and a zone file containing a set of records — are highly structured. Further, records

can be of many different types and have many different kinds of dependencies among them.

Therefore, an effective approach to automatically identifying RFC violations must be able

to generate valid inputs that meet the required structural and semantic constraints of the

domain, and it must also be able to explore different combinations of record types and

features in a systematic way. To solve this joint generation problem, our approach, SCALE

(Small-scope Constraint-driven Automated Logical Execution) leverages a specification of the

DNS nameserver logic to drive test generation. Specifically, we have created an executable

version of the DNS specification described in Chapter 3 and generate tests through symbolic

execution [Kin76] on this executable specification. Symbolic execution is a static analysis

technique that enumerates execution paths in a program and uses automated constraint

solvers to produce an input that will take each enumerated path, thereby generating tests

that cover many different program behaviors.
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While the end-to-end behavior of a DNS query lookup can require contacting many

nameservers, we employ a compositional approach that only generates tests for a single

nameserver in isolation. Because our formal model considers the space of all inputs to the

nameserver that could be produced by the rest of the system, and because the “next step”

delegation of the resolution process is captured in the output at a single nameserver, this

approach still allows us to generate tests for all behaviors of the end-to-end DNS. In other

words, any implementation bug that exists in a DNS nameserver implementation can be

found using our approach. In general, a downside of compositional testing is that it can lead

to false positives if the tester considers input states that are, in reality, unreachable with

respect to the rest of the system. However, in the case of DNS, nameservers keep no internal

state — the response they provide is based only on the supplied query and configuration.

This stateless nature implies that compositional testing will not incur any false positives.

Hence our formal semantics focuses on query lookup at a single nameserver, which we

model as a stateless function that takes a user query and a zone file and produces a DNS

response. This function was introduced as ZoneLookup in the formal model Chapter 3 and

an abstract view of it is shown in Figure 4.4. Given the input query and zone, DNS will first

select the closest matching records in the zone for the query using the SelectBestRecords

function and then follow the decision logic laid out in the figure using these records. Each leaf

node represents a unique case in the DNS. For example, the tree shows four different cases of

exact matches, labelled E1 through E4. E1 corresponds to the first case in the definition of

the ExactMatch function in Figure 3.2. E2 - E4 also map to the remaining cases of the

definition in a similar way. Symbolic execution of our query-lookup function generates inputs

that drive the function down different execution paths, thereby enabling us to systematically

explore the space of DNS behaviors and feature interactions.

Example: Consider the path in Figure 4.4 to the leaf labelled R1. In order to reach that leaf,

the selected records must not contain one with either an exact match or a wildcard match on

the query domain name. Further, there should not be a DNAME match but should be one of
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1 Zen<Response> QueryLookup(
2 Zen<Query> q,
3 Zen<Zone> z)
4 {
5 var records = SelectBestRecords(q, z);
6 var rname = records.At(0).Value().Name();
7 var types = records.Select(r => r.Type());
8
9 return If(

10 rname == q.Name(),
11 ExactMatch(records, q, z),
12 If(
13 IsWildcardMatch(q.Name(), rname),
14 WildcardMatch(records, q, z),
15 If(
16 types.Any(t => t == RType.DNAME),
17 Rewrite(records, q),
18 If(
19 And(types.Any(t => t == RType.NS),
20 Not(types.Any(t => t == RType.SOA))),
21 Response(Tag.R1,
22 Delegation(records, z), Null<Query>()),
23 Response(Tag.R2, empty, Null<Query>())
24 ))));
25 }

Figure 4.5: Record lookup model in C# using Zen.

type NS (Referral). Finally, while not shown in the figure, when preparing a response to

the query the function will also search for a glue record if the NS target is in the same zone.

Solving all of these constraints caused symbolic execution to automatically generate the first

test case shown in Section 4.1, which identified two errors in Bind.

4.2.2 An Executable Model of DNS

I have created an implementation of the formal semantics of query lookup presented

in Chapter 3 as a program in a modeling language called Zen [BM20], a domain-specific

language (DSL) embedded in C#. To illustrate this approach, I show several components
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26 Zen<Response> WildcardMatch(
27 Zen<IList<ResourceRecord>> rrs,
28 Zen<Query> q,
29 Zen<Zone> z)
30 {
31 var exact = rrs.Where(r => r.Type() == q.Type());
32 var record = rrs.At(0).Value();
33 var newQuery = Query(record.RData(), q.Type());
34 var exactSyn = RecordSynthesis(exact, q.Name());
35 var cnameSyn = RecordSynthesis(rrs, q.Name());
36
37 return If(
38 exact.Length() > 0,
39 Response(Tag.W1, exactSyn, Null<Query>()),
40 If(
41 rrs.Any(r => r.Type() == RType.CNAME),
42 Response(Tag.W2, cnameSyn, Some(newQuery)),
43 Response(Tag.W3, empty, Null<Query>())
44 ));
45 }

Figure 4.6: Wildcard match model in C# using Zen.

of my model. Figure 4.5 shows the model’s main query-lookup function, as depicted in

Figure 4.4. The function first selects the best records (Line 5) and then tests if the query

domain name is equal to the records’ domain name (Line 10). If so, then this is an exact

match and the model calls out to a helper function to specifically handle the ExactMatch

subcase (Line 11). Similarly, if the query domain name is a wildcard match for the record

domain name (Line 13), then I invoke the WildcardMatch subcase (Line 14). I show the

implementation of wildcard matching in Figure 4.6. This function implements the case where

the best matching record is a wildcard, properly handles interactions with CNAME records,

and synthesizes the correct records for use in the resolver cache.

Our complete executable model consists of 520 lines of C# code. The model can also easily

extend to new DNS RFCs that would be added in the future. Similarly, if an organization
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has a particular way of resolving RFC ambiguities or purposely deviates from the RFCs in

specific ways, the organization can modify the logical model to reflect that intent.

I chose to implement our formal model in Zen because it has built-in support for symbolic

execution. In Zen, certain inputs can be marked as symbolic, and the ferret will then leverage

SMT solvers [DB08] to produce concrete values for these inputs that drive the program down

different execution paths. In our code examples, the Zen<T> type for inputs has the effect of

marking them as symbolic. The tests produced by symbolic execution can then be used to

test any DNS nameserver implementation. However, making symbolic execution effective

required us to address several challenges, which I describe in the rest of this section.

4.2.3 Generating Valid Zone Files

The first challenge that I encountered is that zone files must satisfy several constraints in

order to be considered well-formed. For instance, if there is a DNAME record in a zone file

for math.uni.edu, then no other records below this domain name may exist, for any record

type (e.g., an A record for fun.math.uni.edu is not allowed). The DNS RFCs define many

such constraints as a way to eliminate ambiguous or useless zones, as shown in Table 4.1.

The table presents a summary of the conditions presented earlier using formal notation in

Section 3.2. Naively performing symbolic execution will produce many zone files that are not

well formed. Further, DNS implementations typically preprocess zone files to reject ill-formed

zones, thereby failing to test the intended execution path of the query lookup logic.

Fortunately, the SCALE approach admits a natural solution to this problem. I have

formalized all of the DNS zone validity conditions as predicates in Zen. Whenever Zen’s

symbolic execution engine produces a constraint representing the conditions under which the

query lookup function takes a particular execution path, I conjoin these predicates to that

constraint before Zen passes it off to an automated constraint solver. In this way I ensure

that all test cases will have well-formed zone files by construction.
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Validity Condition RFC Document
i. All records should be unique (there should be no duplicates). 2181 [EB97]
ii. A zone file should contain exactly one SOA record. 1035 [Moc87b]
iii. The zone domain should be prefix to all the resource records domain

name.
1034 [Moc87a]

iv. If there is a CNAME type then no other type can exist and only one
CNAME can exist for a domain name.

1034 [Moc87a]

v. There can be only one DNAME record for a domain name. 6672 [RW12a]
vi. A domain name cannot have both DNAME and NS records unless there

is an SOA record as well.
6672 [RW12a]

vii. No DNAME record domain name can be a prefix of another record’s
domain name.

6672 [RW12a]

viii. No NS record can have a non-SOA domain name that is a prefix of
another NS record.

1034 [Moc87a]

ix. Glue records must exist for all NS records in a zone. 1035 [Moc87b]

Table 4.1: Summary of DNS zone file validity conditions specified in various RFCs.

4.2.4 Data Representation

In our Zen model, I represent zone files as a list of resource records, where each resource

record contains a domain name, record type, and data fields. I represent user queries similarly

as consisting of a domain name and a query type. Record and query types are represented

using enums, which Zen translates to integer values.

One challenging decision I ran into was how best to represent and model domain names,

for both zone records and record data, in a manner that permits fully automatic and scalable

analysis. For instance, a natural way to encode domain names would be as string values (a

domain name is just a ‘.’ separated string). Indeed, modern SMT solvers like Z3 [DB08]

support the logical theory of strings, so this is a natural approach to consider. However, the

theory of strings is in general undecidable [CCH17, GMS12]. Moreover, this encoding would

require us to define complex predicates for manipulating domain names, including extracting
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each of the labels of a domain name and checking whether one domain name is a prefix of

another.

Therefore, rather than model domain names as strings, I take advantage of the observation

that the particular character values in a domain name label string do not matter for DNS

lookup. Instead, all that matters is whether two labels are equivalent to one another and

whether a label represents a wildcard. As such, I encode a domain name in Zen as a list of

integers and use a specific integer value to represent the wildcard character ‘*’. This allows

us to use simple, efficient integer operations and constraints to manipulate domain names

according to the formal model.

4.2.5 Handling Unbounded Data

A final challenge associated with symbolic execution for my formal model is the fact that

there are several sources of unboundedness. For example, a zone file can contain an unbounded

number of records, and a domain name can contain an unbounded number of labels. Our Zen

model contains an unbounded number of paths, since the number of resource records in a zone

file is unbounded and the function to select the best records must examine all of them and

compare them to one another. SMT constraint solvers have limited support for unbounded

data structures such as lists, and in general, reasoning about such constraints requires

quantifiers, which lead to undecidability [RBC16]. Therefore, in our Zen implementation I

only consider inputs that have a bounded size, e.g., at most N records in a zone file, and

hence only produce test cases that respect these bounds. The size of inputs is a parameter

that is configurable by the user. While the SCALE approach can therefore fail to detect some

errors, I provide experimental evidence of the existence of a small-scope property [Jac02],

meaning that many interesting behaviors, and behavioral errors, can be exercised with small

tests (Section 4.5.1).
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4.3 Generating Tests for Invalid Zone Files

While it’s critical to be able to generate well-formed zone files for testing, bugs can also

lurk in implementations’ handling of ill-formed zones. Many DNS implementations use

zone-file preprocessors to perform syntactic and semantic checks. For example, Bind

uses named-checkzone [Con02], Knot uses kzonecheck [Lab22], and PowerDns uses

pdnsutil [BV22]. The implementations either reject an ill-formed zone or accept it but

convert it to a valid one by ignoring certain records that cause it to be semantically ill-formed.

Many security vulnerabilities for software lie in the incorrect handling of unexpected inputs

(e.g., in parsers [Zal13]), and DNS software should be no different. Since my executable model

includes a formulation of the validity conditions for zone files, I leverage Zen to systematically

generate zone files that violate one of these conditions. For example, I ask Zen to generate a

zone file in which all but the 7th condition in Table 4.1 is violated and the rest are satisfied.

If an invalid zone is rejected, then there is no issue, but if it is accepted, then there can

be errors in how the zone is used for DNS lookups. To test for such errors we must also

be able to generate queries for these zones. However, the formal model is only well defined

for valid zone files so we cannot use it to generate queries. Instead, I use my technique on

zone-file verification presented in Chapter 5 to partition queries into equivalence classes (ECs)

relative to a given zone file. An equivalence class is a set of queries with the same resolution

behavior, assuming a correct underlying DNS implementation, and the ECs are generated

through a simple syntactic pass over a zone file. Ferret generates these ECs and then

uses one representative query from each EC as a test. Though the number of ECs can vary

widely, depending on the records in a zone file, in practice a zone containing four records will

typically induce tens of ECs.
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4.4 System Overview

Ferret is divided into several components, which are depicted in Figure 4.2. First it uses

my Zen model described above to generate test inputs. Because domain names are encoded

in Zen using lists of integer labels (see Section 4.2.4), Ferret includes a shim layer that

translates the generated zone files and queries into meaningful domain names by mapping

these labels to a collection of predefined strings (e.g., com). Ferret uses the equivalence-class

(EC) generation algorithm of GRoot (Chapter 5) to generate test queries for invalid zone

files.

Ferret uses Docker [Mer14] to construct a working container image of each implemen-

tation. I cloned the implementations’ code as of October 1st, 2020 [Con86, Lab02a, CZ11,

HC02, Gc16, EUR12, FC15, Tre01], from their open-source repositories on GitHub [PWH08]

and GitLab [SZ14]. Ferret starts a container for each image, and each container serves one

zone file at a time as an authoritative zone. The containers expose the DNS port 53 to the

host system by mapping an unused host port and enable the host to send queries and receive

responses from the DNS server running in that container. Thus each implementation gets a

unique host port that maps to the container’s DNS port 53. Ferret uses a Python library

dnspython [HC05] to construct queries and send them to each implementation’s container.

The library sends the query to each mapped port and then collects the responses. The Docker

daemon running on the host machine handles the packet forwarding and mapping seam-

lessly. For each test case, the Python script prepares the container by stopping the running

DNS nameserver, copying the new zone file and the necessary implementation-dependent

configuration files to the container, and then restarting the DNS nameserver.

Using containers allows us to easily isolate each implementation. My initial implementation

of Ferret spun up new containers for each test case, but this did not scale well. Instead,

Ferret reuses the existing implementation container by restarting the nameserver after

each test case; it only restarts the container when a test case causes a server to experience
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an internal error (e.g., server crash or unresponsiveness). Ferret is open-source and my

container approach makes it easy and convenient to integrate new nameserver implementations

into Ferret. Other DNS developers can generate an image of their implementation and can

quickly compare it with existing ones.

Finally, Ferret performs response grouping followed by fingerprinting to deduplicate

errors that are likely to have the same root cause. For each test case, two DNS responses are

considered equivalent, and hence in the same group, if they have the same response flags,

return code, answer, and additional sections. Ferret only compares the authority section

in two responses when their answer sections are empty. I do this because implementations

are free to add additional records like a zone’s SOA or NS records along with the requested

records. I then fingerprint tests that result in more than one group and thereby represent a

likely error.

The fingerprint for a valid test is a tuple consisting of (a) the case in the formal model (the

leaf label in the decision tree from Figure 4.4), and (b) the response groupings. An example

fingerprint is
〈
R1,

{
{Nsd, Knot, PowerDns, Yadifa}, {Bind, CoreDns}, {TRustDns,

MaraDns}
}〉

. The fingerprint for an ill-formed test is similar but I use the validity condition

being violated instead of the model case.

4.5 Results

4.5.1 Testing Using Valid Zone Files

Using Ferret, I generated thousands of tests and used them to compare the behavior

of 8 popular open-source authoritative implementations of DNS. Table 4.2 shows the 8

implementations, the languages they are implemented in, and a brief description of their

focus or how they are used. I constrained Ferret to generate tests where the length of

each domain name and the number of records in the zone was at most 4. I ran Ferret on

a 3.6GHz 72 core machine with 200 GB of RAM and it generated a total of 12,673 valid
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Implementation Language Description
Bind [Con86] C de facto standard
PowerDns [HC02] C++ popular in N. Europe
Nsd [Lab02a] C hosts several TLDs
Knot [CZ11] C hosts several TLDs
CoreDns [Gc16] Go used in Kubernetes
Yadifa [EUR12] C created by EURid (.eu)
TRustDns [FC15] Rust security, safety focused
MaraDns [Tre01] C lightweight server

Table 4.2: The eight open-source DNS nameserver implementations tested by Ferret. Ferret can

test implementations implemented in any language.

test cases, one per path in our Zen model that is consistent with the length constraints, in

approximately 6 hours. Users can run the tests in parallel, so the runtime depends heavily on

the user resources for parallelization. Each test takes around 10 seconds to run on average,

and most of the time is spent setting up the zone file and necessary configuration files.

As described in Section 4.4, Ferret runs each test against all 8 implementations and

groups their responses. Out of 12,673 tests, Ferret found more than one group in the

majority (8,240) of tests. Table 4.3 shows the number of tests generated for each case in

the model (Figure 4.4), the number of tests where there was more than one group, and the

number of unique fingerprints formed for each model case.

In total the 8,240 tests with more than one group were partitioned into 76 unique

fingerprints, for a reduction of more than two orders of magnitude. For 24 of these fingerprints

there exists only a single test case, while one fingerprint has 1892 corresponding tests. These

76 fingerprints can over-count the number of bugs since a single implementation issue can

cause errors on multiple model paths. For example, Yadifa, TRustDns, and MaraDns

do not support DNAME records; so any generated test containing this feature will cause them

to give the wrong answer or fail to respond. However, two tests can also have the same
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Model Case #Tests #Tests Failing #Fingerprints
E1 3180 239 7
E2 12 10 5
E3 96 12 3
E4 6036 5312 11
W1 60 33 8
W2 24 21 9
W3 18 16 1
D1 230 65 4
R1 2980 2529 27
R2 37 3 1

Table 4.3: Test generation statistics for n = 4. The model case refers to the leaves in Figure 4.4. Even

though the number of failed tests is higher, the number of fingerprints is small.

fingerprint despite different implementation root causes; so the number of fingerprints can

also under-count the number of bugs.

For these reasons, I manually examined the test cases matching each fingerprint, examining

them all when the fingerprint has 4 or fewer tests and otherwise examining a small random

sample. By doing this I identified 24 unique bugs, as summarized in Table 4.5 (all except the

ones marked with ✧). All of these have been confirmed as actual bugs (no false positives)

and developers have fixed 15 of them at the time of writing.

4.5.2 Testing Using Invalid Zone Files

Ferret generated 900 ill-formed zone files, 100 violating each of the validity conditions

in Table 4.1, in 2.5 hours. I used these zone files to test the four most widely used DNS

implementations — Bind, Nsd, Knot, PowerDns— as these have a mature zone-file

preprocessor available.
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violated

#Zones with
a difference

A A A R 100 + 100 + 1 i or viii or ix 11 + 94 + 1
A A R R 100 + 61 vi or ix 8 + 3
A R A R 17 + 100 ii or iii 1 + 6
A R R A 60 vii 53
R A R A 34 ix 7
A R R R 39 vii -
R A R R 4 ix -
R R R A 95 + 1 v or vii -
R R R R 83 + 100 + 5 ii or iv or v -

Table 4.4: Invalid zone file statistics. The second row shows that 100 (61) zone files that violate

condition vi (ix) are accepted by only Bind and Nsd, and 8 (3) of them resulted in some difference

between the two implementations.

There is no practical limit on the number of invalid zone files the ferret can generate.

I limited it to 100 for each violation in our experiments, but one could use Ferret to

generate many more such tests if desired. Similarly, though I only explored violations of

single well-formedness rules, it is straightforward to use Ferret to generate tests that violate

a combination of rules. As a first step, Ferret checked all of the zone files with each

implementation’s preprocessor: named-checkzone [Con02] for Bind, kzonecheck [Lab22]

for Knot, nsd-checkzone [Lab02b] for Nsd, and pdnsutil [BV22] for PowerDns. Each

implementation can either reject or accept the invalid zone file and Table 4.4 shows the

statistics of how different implementations treat the zone files.

All together there are 573 invalid zone files (the first five rows in the table) that are

accepted by more than one DNS implementation and so are amenable to differential testing.

Our formal model relies on zones to be well-formed: so we cannot use it to generate queries

for these zones. Instead I leverage GRoot (Chapter 5), which generates query equivalence

classes (ECs) of the form ⟨example.com, t⟩ for a given zone file, one for each DNS record type
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Impl. Bugs Found Bug Type Status

Bind

Sibling glue records not returned [KAK21b] Wrong Additional ✓

Zone origin glue records not returned [KA21] Wrong Additional ✓

DNAME recursion denial-of-service✧ [KAK21a] Server Crash □✓
Wrong RCODE for synthesized record✧ [KAK20] Wrong RCODE □✓

Nsd

DNAME not applied recursively [KW21b] Wrong Answer □✓
Wrong RCODE when * is in Rdata [KW21a] Wrong RCODE □✓
Used NS records below delegation✧ [KW21c] Wrong Answer □✓
Wrong RCODE for synthesized record✧ [KW20] Wrong RCODE □✓

PowerDns
CNAME followed when not required [KD20a] Wrong Answer ✓

pdnsutil check-zone DNAME-at-apex✧ [KD20b] Preprocessor Bug □✓

Knot

Incorrect record synthesis [KPS21a] Wrong Answer □✓
DNAME not applied recursively [KPS21c] Wrong Answer □✓
Used records below delegation [KPS21b] Wrong Answer □✓
Error in DNAME-DNAME loop Knot test [KPS20] Faulty Knot Test □✓
Wrong RCODE for synthesized record✧ [PS20] Wrong RCODE □✓

CoreDns

NXDOMAIN for existing domain [KG21b] Wrong RCODE □✓
Wrong RCODE for CNAME target [KO20] Wrong RCODE □✓
Wildcard CNAME loops & DNAME loops [KG21a] Server Crash □✓
Wrong RCODE for synthesized record [KOY20] Wrong RCODE □✓
CNAME followed when not required [KOY21] Wrong Answer □✓
Sibling glue records not returned [KG21c] Wrong Additional ✓

Yadifa
CNAME chains not followed [Kye20b] Wrong Answer □✓
Wrong RCODE for CNAME target [Kye20a] Wrong RCODE □✓
Used records below delegation [Ky21] Wrong Answer □✓

MaraDns†
AA flag set for zone cut NS RRs Wrong Answer ✓

Used records below delegation Wrong Answer ✓

TRustDns†
Wildcard match only one label [KF21] Wrong Answer ✓

Used records below delegation [KFB20] Wrong Answer ✓

AA flag set for zone cut NS RRs [KF20b] Wrong Flag ✓

CNAME loops crash the server [KF20a] Server Crash □✓

Table 4.5: Summary of the bugs found by Ferret across the eight implementations. Status column

represents whether the developers responded and acknowledged (✓) and also fixed (□✓) to the filed bug

report. The † symbol denotes implementations with unreported issues due to missing or unimplemented

features. The ✧ symbol denotes the bugs found exclusively using testing with invalid zone files. We

reported all the bugs Ferret identified to the respective developers before publishing this paper.
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t, and does not require the zone to be semantically well-formed. I used 7 query types: A, NS,

CNAME, DNAME, SOA, TXT, AAAA. I excluded 19 zone files as GRoot generated over 200 ECs

for each of them due to multiple interacting DNAME loops (explained in Section 6.3). For the

remaining 554 zone files, the average number of ECs is 21*7 i.e., 21 domains names and each

domain name is paired with the 7 types, and I chose one representative query from each EC.

The last column in Table 4.4 shows the results of differential testing. For example, 106 out

of the 201 zone files in the first row exhibited differences among the three implementations

during testing. I manually inspected all differences for the zone files that violated conditions

of i, ii, iii, vi, and ix, as there were 12 or fewer such differences in each category, and we

inspected a random sample for the others. By doing this I identified 6 new errors as shown

in Table 4.5 with the ✧ symbol and all of them are fixed. Some of the errors identified earlier

were also present here but are not double-counted.

4.5.3 Small-scope Property Validation

Finally, I performed an experiment to validate the small-scope property that justifies our

approach — many interesting behaviors can be covered with small tests. I used Ferret

to generate valid tests where the length of each domain name and the number of records

in the zone were limited to n, for different values of n. Table 4.6 shows the results. For

example, when n = 2 there are 52 feasible paths through the model. Ferret generated the

corresponding 52 tests in 10 minutes, out of which 12 had more than one group, and these 12

fell into 9 fingerprints. By inspecting those failed tests, I identified 4 unique bugs, which are

a subset of the ones identified by our evaluation described in Section 4.5.1, where n = 4.

My experiment identifies two distinct forms of small-scope property. First, the DNS query

resolution protocol itself, as represented by our logical model, has a small-scope property. In

particular, when n = 2 all leaf nodes in Figure 4.4 are covered by at least one test, except for

the R1 leaf, and all leaf nodes are covered when n is 3 or higher. Hence, although we are
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Max Length (n) 2 3 4 5
No. of Tests 52 618 12673 646K (51K tested)
Test generation time 10m 40m 6h 14d
No. of Tests Failing 12 224 8240 41173
No. of Fingerprints 9 22 76 115
No. of Bugs 4 14 24 27

Table 4.6: Results summary for different length bounds.

restricted to generating small zones, we can still cover all return points in our formal model,

each of which represents a distinct RFC behavior.

Second, the DNS nameserver implementations have a small-scope property. In part the

fact that I have identified dozens of subtle new errors is evidence that small tests can explore

interesting behaviors. The results in Table 4.6 add further evidence. As I increase the size of

n from 2 to 3 to 4, the number of bugs identified goes from 4 to 14 to 24. In the n = 5 case,

Ferret generated over 646K tests and took almost 14 days to finish. The distribution of

tests across model cases is similar to the n = 4 breakdown shown in Table 4.3, where the

majority of tests fall into the E1, E4 and R1 cases. I randomly sampled 50K tests to run

from these three cases, according to their proportions. The other cases totalled to around

1000 tests, so we ran all of them. Out of the resulting 115 fingerprints, 50 fingerprints were

in common with the fingerprints of n = 4. I therefore decided to examine the remaining 65

fingerprints to search for new bugs. For these 65 fingerprints, the median number of tests in

each fingerprint was 3, and the mode was 1. I found three bugs that we did not find with

n = 4, but all three bugs were covered by the tests for invalid zones with n = 4 (Section 4.5.2).

In other words, increasing n from 4 to 5 has so far not uncovered any new errors in the DNS

nameserver implementations.
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4.6 Example Bugs

I now provide a detailed description of some of the bugs from Table 4.5. Two of them were

already described in Section 4.1.

4.6.1 Bug #3: CoreDns crash

Ferret generated the following test that causes CoreDns, the recommended nameserver for

Kubernetes, to crash. It was subsequently confirmed and fixed by the CoreDns developers.

example. SOA · · ·
∗.example. CNAME foo.example.

Query: ⟨baz.bar.example., CNAME⟩

In this example the zone file has a wildcard CNAME record that rewrites any query ending

with the label example to foo.example. This rewritten query will then match the wildcard

record again and so on, causing CoreDns to loop and consume resources until, eventually,

the server crashes with the following message:

"runtime: goroutine stack exceeds 1000000000−byte limit"

"runtime: sp=0xc03c6c0378 stack=[0xc03c6c0000, ...]"

"fatal error: stack overflow"

Interestingly, CoreDns correctly guards against CNAME loops that do not involve wildcard;

so only a test that combines CNAME and wildcards will trigger the bug. After our bug report,

the developers fixed the issue by adding a loop counter and breaking the loop if the depth

exceeds nine. They commented: “Note the answer we’re returning will be incomplete (more

cnames to be followed) or illegal (wildcard cname with multiple identical records). For now

it’s more important to protect ourselves than to give the client a valid answer.”
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Crashes like this represent serious security vulnerabilities, particularly in multi-tenant

settings such as the attack described earlier in Figure 4.3(a).

4.6.2 Bug #4: CoreDns apex only zone error

Ferret generated the following test that caused CoreDns to return a response that

misinforms the resolver that a domain does not exist when it does exist, in fact. Such

responses can lead to an outage similar to the recent one faced by Microsoft Azure [Tun19],

where the nameserver replied with the non-existence of domains, thereby disconnecting users

from services globally.

cs.clg. SOA . . .
cs.clg. NS ns1.net.

Query: ⟨cs.clg., A⟩

The above zone file only has records at what is called the zone apex. For this test, the

response should have an empty answer section but with a NOERROR RCODE. CoreDns returned

an empty answer but with an NXDOMAIN. The RCODE is important as resolvers can use QNAME

minimization as described in RFC 7816 [Bor16] when resolving names like email.cs.clg and

will wrongly conclude that there is nothing at cs.clg as well as below it.

When we filed the bug report with CoreDns, they acknowledged the problem and also

determined that this only happens when the zone does not contain any other data, i.e., it is

an apex-only zone. The root cause of the issue was explained as, “... This stems from the

optimization of putting the APEX record (SOA+NS) not in the tree (less and less convinced

that was a good idea).”

4.6.3 Bug #5: Wrong RCODE for synthesized CNAME

Ferret generated a zone that violates condition vii in Table 4.1:
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test.com. SOA . . .
foo.test.com. DNAME bar.test.com.

cs.foo.test.com. AAAA 1:db8::2:1

Query: ⟨www.foo.test.com., CNAME⟩

Bind and PowerDns accepted the zone file but Nsd and Knot did not. Ferret chose

the above query as the representative from the query EC ⟨α.foo.test.com., CNAME⟩ generated

by GRoot, where α represents any sequence of labels that does not start with cs. Bind

responded with:

"rcode NXDOMAIN",

";ANSWER",

"foo.test.com. 500 IN DNAME bar.test.com.",

"www.foo.test.com. 500 IN CNAME www.bar.test.com.",

The response from PowerDns was the same but with a NOERROR RCODE. The RCODE is

important as resolvers can use QNAME minimization (RFC 7816 [Bor16]) to wrongly conclude

domain (non-)existence if an incorrect RCODE is returned. However, since the RFCs do not

describe this subtle case, the intended behavior is unclear. Since the query is not relevant to

the AAAA record, which violates the validity condition, to further investigate this issue we

decided to remove that record and check the responses from Nsd and Knot. Both responded

with the same response as Bind, leading us to (wrongly) conclude that the issue was with

PowerDns.

To our surprise, after reporting the issue to PowerDns they responded: “The PowerDNS

behavior looks correct to me. Are you sure BIND, NSD, and knot all return NXDOMAIN on a

CNAME query in this context?” Bind and Knot noticed the issue we filed on PowerDns’s

GitHub and fixed the bug almost immediately, even before we filed reports on their repositories.

After some back and forth with the Nsd developers they concurred saying: “If you are right
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that the other implementations do this, then we can do that too; that makes less unexpected

surprises in packet responses.”

4.6.4 Bug #6: PowerDns pdnsutil bug

Ferret generated the following test case and PowerDns returned an incorrect response,

exposing a bug in its zone-file preprocessor.

dept.com. SOA . . .
dept.com. DNAME dept.edu.

host.dept.com. A 1.1.1.1

Query: ⟨host.dept.com., A⟩

The zone file is considered invalid as it violates condition vii in Table 4.1. nsd-checkzone

and kzonecheck preprocessors reject the zone file but named-checkzone and pdnsutil

do not raise any errors or warnings and accept the zone file. When queried for the A

record, PowerDns returned this record even though it should have used the DNAME record.

PowerDns has a long-standing open issue about handling DNAME occlusion (records below

a DNAME, which should be ignored), and pdnsutil generally gives a warning but did not in

this specific case. We filed a bug report for this test and the developers confirmed a bug in

pdnsutil when the DNAME is at the apex of the zone. This is now fixed and pdnsutil gives a

warning as in other occlusion cases.

4.6.5 Bug #7: DNAME loops

As another example, Ferret generated a test case that creates a loop using DNAME records

such that, as in the wildcard loop example in Section 4.6.1, certain input queries will loop

indefinitely.
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corp. SOA . . .
corp. NS ns1.com.
corp. DNAME us.corp.

Query: ⟨www.corp., NS⟩

In the test, the DNAME record is applied to the query once, which results in a synthesized

CNAME record (for caching) that is specialized for the user query:

"www.corp. 500 IN CNAME www.us.corp."

The nameserver then proceeds to lookup the response for the new, rewritten query that has

the domain name www.us.corp. This process can lead to infinite recursion.

In this case, implementations are free to choose how they will respond. It is important

that implementations guard against these cases, which can otherwise lead to heavy resource

consumption by the nameserver. Bind applies the DNAME multiple times and stops when the

limit reaches 17. CoreDns did not respond to this test, and the server crashed as with the

wildcard loop bug shown earlier. The developers have since patched this bug. PowerDns

returns an error message through the SERVFAIL RCODE, while Knot and Nsd apply the

DNAME only once and return the response. However, we found through another test that the

Knot and Nsd behavior was also incorrect, because forcing the DNAME to only be applied

once prevents legitimate cases where the same DNAME record must be applied multiple times

(Section 4.6.7).

As a final interesting byproduct, this test also found an error in the Knot test suite

that compares Knot’s responses with Bind. A comment indicated that a test targeted a

DNAME-DNAME loop scenario as in our test. On inspection, however, we realized they did not

construct the zone file correctly, and so the test case did not create a loop. When we reported

the issue, the developers agreed and fixed it.
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4.6.6 Bug #8: Yadifa CNAME chains not followed

Ferret generated a test case that revealed a bug in Yadifa, which resulted from a

side effect of a previous fix their developers made. The bug causes Yadifa to return an

incomplete response forcing the resolvers to make multiple unnecessary round-trips to the

same nameserver.

dept.com. SOA . . .
www.cs.dept.com. CNAME cs.dept.com.

cs.dept.com. CNAME dept.com.
dept.com. A 2.2.2.2

Query: ⟨www.cs.dept.com., A⟩

For the test query, the expected response is to rewrite the query twice using both the CNAME

records and finally return the IP address. Yadifa rewrote the query only once and did not

return the IP address, which was clearly in violation of the RFC rule, “CNAME chains should

be followed” [Moc87a].

CNAME chains are used extensively in practice as a form of indirection, for instance to

optimize traffic in CDNs [SBK20]. In this case, Yadifa simply returned the incomplete

answer. They acknowledged the issue and responded: “The rerun of the query was incorrectly

disabled, the issue is fixed and will be updated on github on our next update of the code.”

They also mentioned that it was a side effect of a previous fix they made and added a

regression test to keep such things in check.

4.6.7 Bug #9: DNAME not applied recursively

As an another example of an interesting bug that Ferret was able to find, consider the

following test case that it generated:
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sig.edu. SOA . . .
sig.edu. NS ns1.outside.edu.
sig.edu. DNAME edu.

Query: ⟨sig.sig.sig.edu., NS⟩

This zone file creates a DNAME record that rewrites query prefixes repeatedly. For example, on

the generated query the DNAME record will match and be applied two times. For the above

test case, Nsd and Knot incorrectly did not apply the same DNAME twice. This test does not

apply to Yadifa, MaraDns, and TRustDns as they do not support DNAME. The response

(answer section) from Bind, PowerDns, and CoreDns was:

";ANSWER",

"sig.edu. 500 IN DNAME edu.",

"sig.sig.sig.edu. 500 IN CNAME sig.sig.edu.",

"sig.sig.edu. 500 IN CNAME sig.edu.",

"sig.edu. 500 IN NS ns1.outside.edu.",

";AUTHORITY",

";ADDITIONAL"

where as the response (answer section) from Nsd and Knot was:

";ANSWER",

"sig.edu. 500 IN DNAME edu.",

"sig.sig.sig.edu. 500 IN CNAME sig.sig.edu.",

If, in reality, a zone similar to this is served by either Knot or Nsd, then the resolver

would be making two round-trips instead of a single-round trip it would have if it were others.

Increased round-trips by the resolver can affect performance and increase query-response

delay to the user.
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Knot agreed that the response has to be similar to Bind’s response and fixed it. The

initial reaction from Nsd was, “It is a feature, not a bug. The reason is that it is seen as a

DNAME loop because the same DNAME is applied twice. If it was two different DNAMEs

then there would be two DNAMEs in the answer.” Later, they responded as, “But fixed it

anyway, because the same behavior as BIND is desirable. The fix tests if the CNAME can

be added. That results in the NS record returned in the example you gave. Thanks for the

report!”

4.6.8 Bug #10: Nsd wrong RCODE when * is in Rdata.

As the final example, Ferret generated a test case that revealed a bug in how Nsd sets the

RCODE when CNAME target has * in its domain name and does not exist in the same zone. As

said earlier, RCODE is important as resolvers use it to determine whether domains exist or not.

The test case that triggered this issue was the following:

booksonline. SOA . . .
buy.booksonline. CNAME www. ∗ .booksonline.

Query: ⟨buy.booksonline., NS⟩

For the test query, Nsd returns the CNAME record in the response but sets RCODE to NOERROR

where as others set it to NXDOMAIN, which is expected as www. ∗ .booksonline does not exist.

The interesting aspect here was, if there was no * in the domain name then Nsd sets the

RCODE properly.

When reported, the developers acknowledged and fixed it. Their response was, “It has

to do with the internal data structure for storing domains in the memory of NSD, there a

domain struct is created for the right hand of the CNAME, and it is set to be non-existing.

The is_existing was not checked for the wildcard expansion, and this is fixed by the commit.

So this fix is only for CNAMEs to a wildcard right hand, where that wildcard right hand

does not exist in the zone. Thanks for the report!”
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4.7 Discussion

The SCALE approach worked surprisingly well at identifying subtle errors in implementations.

This was not obvious from the beginning, since each implementation can have very different

control logic compared to one another and compared to our formal model. And yet seemingly

the tests derived from paths through my formal RFC model frequently uncover bugs in rare

control paths for these implementations.

On the other hand, this approach is not a panacea. I found situations where one path

in the model corresponds to multiple paths in an implementation due to the internal data

structures that it uses to represent different record types, which can lead to Ferret missing

some issues. This showed up, for example, with empty non-terminals (ENTs) — domain

names that own no resource records but have subdomains that do. Since there is no explicit

branch that differentiates empty non-terminals in the model, Ferret did not generate

test cases where the zone file had both an ENT and a query targeting that ENT. However,

by manually testing a few such cases, I found two more bugs in CoreDns. In one case,

CoreDns returns an incorrect response when there is an empty wildcard non-terminal, and

in the other case, it applies wildcard to the cases it should not as they match the ENT.

Going forward it may be possible to extend Ferret to find more cases like this. One

way to do so would be to manually add additional non-semantic branches to the model to

expose behavior thought to be error-prone. Yet another approach would be to generate more

than one input per path in the model by attempting to vary the query types.

4.8 Related Work

Ferret and SCALE are related to several lines of prior work in DNS and in automated

testing.
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Verified DNS implementations. One approach is to build, from scratch, a nameserver

implementation verified to be correct. This approach has found some success in other

domains, for example, in operating system microkernels [KEH09] using proof assistants

such as Coq [Let04]. IRONSIDES [CF12] is an implementation of a DNS resolver and

authoritative nameserver that uses SPARK [Bar12] to prove the absence of dataflow errors

such as buffer overflows. While this work is promising, it does not formalize the DNS RFC

semantics and thus cannot provide any functional correctness guarantees. Moreover, open

source implementations such as Bind [Con86] are already used pervasively in the Internet.

Providing a new verified implementation does not help these existing deployments.

Models for DNS. In my first work on the DNS [KBA20a] I presented the first formal-

ization of DNS semantics. However, it was a paper formalism and was only used to prove the

correctness of the equivalence-class generation algorithm that forms the core of GRoot’s

approach to verifying zone files. Indeed, GRoot assumes that DNS implementations conform

to the DNS RFCs. This work is therefore complementary, but I used GRoot’s logical

model as a basis for my executable Zen model. I also leveraged GRoot’s equivalence-class

generation algorithm to create queries for invalid zone files.

Fuzz testing. Fuzz testing is the technique in which a program is bombarded with many

randomly generated inputs. As mentioned in the beginning of the chapter, fuzzing cannot

easily be used in our setting due to the need to navigate complex constraints and dependencies,

and hence existing fuzzers for DNS [Pat22, Cam19, St10] are limited to testing DNS parsers

and use a fixed zone file. Fuzz testing with semi-random and/or grammar-based or mutation

tests has seen success in recent years for certain code bases [Hoc07, Edd04, LSF15, BPR16,

Zal13, God20, LS18, GCB16]. Mutation testing [LS18, GCB16] mutates well-formed inputs

randomly or based on coverage feedback. The success rate of mutating well-formed seed

zone files to get new zone files would be close to zero as mutation will likely make them

not well-formed. Users must also instrument the implementation to use coverage feedback,

which will be on an implementation basis and not based on RFCs. While grammar-based
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approaches [Edd04, AS19] would ensure that generated inputs are syntactically well-formed,

they still wouldn’t address the issues of ensuring semantic well-formedness or relating the

query to the zone files.

Symbolic execution. Symbolic execution [GKL08, GKS05], which systematically solves

for inputs that take different execution paths in a program, has also been successful [CDE08,

CJV11]. However, as described in the beginning, due to the scale and complexity of DNS

nameserver implementations, symbolic execution has been used only on individual functions

and has avoided the need to generate zone files [RE15]. My SCALE approach uses symbolic

execution to drive test generation, but it does so on an executable model of the RFC behavior,

which is significantly smaller and simpler than an implementation and has carefully chosen

data representations that are amenable to symbolic execution. As a result, symbolic execution

on my model is tractable and allows me to jointly generate (small) zone files and DNS queries

that exercise interesting behaviors.

Model- and specification-based testing. In model-based testing (MBT) [BMM18,

NR95, VCG08, PA09] a user builds an abstract model of the system to test (e.g., a finite state

machine [BMM18, VCG08]). A tester implementation then generates paths through this

abstract model and creates concrete tests by “filling in” missing information from the abstract

example. For static network dataplane verification, [SPN16] developed a network modeling

language to model different network boxes. Closest to my work are model-based testers for

black-box network functions (e.g., [FYT16, SWD20]), which also use symbolic execution to

generate tests. However, they respectively use finite-state machine models [FYT16] and a

domain-specific language for specifying network function behavior [SWD20], while I have

implemented a full functional model of DNS in a general modeling language [BM20]. Further,

their setting does not require generating configurations, which is the key technical challenge for

testing protocols like DNS. Specification-based testing leverages a user-provided specification

of the valid inputs to a function. Most commonly, tests are generated by finding inputs that

satisfy a given precondition [BKM02]. Like SCALE, these approaches typically rely on a
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small-scope hypothesis [Jac02] and hence focus on generating small inputs. Recent work has

developed an approach to automated testing for QUIC implementations [MZ19b, MZ19a] that

leverages a formal specification, but in a very different way than in our approach. Specifically,

the specification models the party that is interacting with the implementation being tested

and is used to generate valid responses.

4.9 Comments from DNS Community

I presented SCALE and Ferret at a DNS-specific workshop called DNS OARC (DNS

Operations, Analysis, and Research Center), attended by DNS operators, implementors (for

example, Bind, Knot, PowerDns, and Amazon Route 53 DNS developers), and researchers.

My work was well received by the community. The following are some of the comments I

received after the presentation:

• The DNS-OARC workshop tweeted the following from their official handle — “Incredible

reception from the audience on @SivaKesavaRK presentation. The automation tool

received great compliments from the DNS experts.”

• Peter Van Dijk, a senior PowerDns developer commented — “This is awesome, thank

you for this work, and thank you for your very clear bug reports, both to us (PowerDNS)

and to other projects. I was not kidding about the excellent bug reports, by the way -

(link to a bug report).”

• Vicky Risk, director of marketing at Internet Systems Consortium, said — “I was

skeptical because I thought – why should I believe his tests, but he proved them by

running against so many DNS servers through them. So, possibly new RFCs should

come with their own logic diagram which can be used to generate the tests”
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• Paul Hoffman, a principal technologist at ICANN and author or co-author of many

DNS-related RFCs from the IETF, agreed with Vicky Risk, saying, “I was skeptical at

the beginning but blown away by the end.”

• There were similar comments on the work from Casey Deccio, assistant professor at

Brigham Young university, Joe Abley, chief technology officer at public interest registry,

Gavin McCullagh, principal systems development engineer in Amazon Route 53, and

others.

4.10 Summary

In this chapter, I introduced Ferret, the first automatic test generator for RFC compliance

of DNS nameserver implementations. The SCALE approach underlying Ferret uses

symbolic execution of a formal model to jointly generate configurations together with inputs.

Ferret combines this technique with differential testing and fingerprinting to identify and

automatically triage implementation errors. In total Ferret identified 30 new bugs, including

at least two for each of the 8 implementations that we tested.

I believe my SCALE approach to RFC compliance testing and “ferreting” out bugs

through (i) symbolic execution of a small formal model to jointly generate configurations

together with inputs, combined with (ii) differential testing, and (iii) fingerprinting, could

be useful more broadly beyond the DNS. For instance, there are many other complex and

distributed protocols used at different network layers such as routing protocols like BGP

and OSPF, flow control protocols like PFC, new transport layer protocols such as QUIC,

and many more. I will describe some challenges and preliminary ideas on how to apply the

SCALE methodology beyond DNS in the future work section.
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CHAPTER 5

DNS Configuration Verification

As we have briefly seen in the first two chapters, configuring DNS zone files of organizations

is challenging for several reasons - complex record types, nondeterminism, scale of the system

and distributed management. In this chapter, I first provide a more concrete and an end-

to-end example to demonstrate these challenges in Section 5.1. To make matters worse,

configuration errors in DNS are often highly disruptive due to its global presence and residual

caching effects from resolvers. For example, a 2014 misconfiguration at GitHub resulted in a

loss of access to open source repositories [Fry14] (possibly impacting SIGCOMM authors that

year), and a misconfiguration for the JavaScript Node Package Manager (NPM) caused users

to lose access to the service world-wide [npm18]. In both cases the outages persisted for hours

as a result of DNS resolvers caching the misconfigured response. Perhaps the most severe of

these outages was one caused by a recent DNS misconfiguration at Microsoft [Tun19] that

resulted in a global outage impacting all Azure customers for 2 hours. The error was caused

by a management process necessitated by a migration, which resulted in an inconsistency

among zone file replicas.

To prevent DNS-related outages, operators today rely on a mix of techniques such as

monitoring [Kep20, ZBW07], testing [Hos20], linting [Mic18] and manual review. While

these approaches are often effective at identifying issues, most of them can only catch errors

after they have already been introduced into a live system. For instance, solutions based on

monitoring have this limitation and are further complicated by deployment factors such as

caching, which can delay the identification of a problem, and geo-replication, which can alter
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the nameserver used to resolve a query based on the client’s geographic location. Further,

none of these approaches can provide strong guarantees — the system may still have bugs

even after successfully passing all of these checks.

To address the problem of DNS misconfiguration, I present GRoot in this chapter, which,

to the best of my knowledge, is the first verification tool for DNS configurations. Given

the DNS zone files of an organization and a property Φ of interest, my algorithm and the

corresponding tool GRoot will either verify that Φ holds for all possible DNS queries or

provide all counterexamples.

GRoot avoids verifying the huge space of DNS queries by first partitioning all possible

queries into equivalence classes (ECs), each of which captures a distinct behavior. The key

property of this partition is that two queries in the same EC resolve to the same set of possible

answers (in general a query can have multiple possible answers due to nondeterminism inherent

in the DNS resolution process) in the given DNS configuration. GRoot then symbolically

executes the set of queries in each equivalence class to efficiently find (or prove the absence

of) any bugs such as rewrite loops. GRoot relies on the formal model from Chapter 3 to

automatically verify DNS configurations and detect any misconfigurations. I, indeed, use

the formal model to prove that my EC generation algorithm satisfies the key correctness

property described above.

I applied GRoot to the configuration files obtained from a large campus network which

has over a hundred thousand records, GRoot revealed 109 new bugs and completed in under

10 seconds. GRoot identified bugs in the network ranging from delegation inconsistencies to

lame delegations to rewrite loops and others. When applied to internal zone files consisting of

over 3.5 million records from a large infrastructure service provider, GRoot revealed around

160k issues of blackholing, which initiated a cleanup of the zone files. I, also, show GRoot

can scale to networks with tens of millions of records spread across tens of thousands of zones

using a synthetic dataset that I created from over 65 million real DNS records [DNS13].
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To summarize, I make the following contributions:

(§ 5.2) I describe a fast algorithm to generate equivalence classes of DNS queries. These

equivalence classes enable GRoot to efficiently, and exhaustively, check the correctness

of DNS zone files.

(§ 5.3) I describe a technique for symbolically executing the ECs using the formal model and

checking properties efficiently as graph properties.

(§ 5.5) I present formal proofs to show that the EC generation algorithm is sound, complete

and efficient.

(§ 5.7) I present an evaluation of GRoot on production configuration files. I evaluate GRoot

using data from (a) configurations obtained from a large campus network, (b) con-

figurations obtained from a large infrastructure service provider, and (c) a synthetic

dataset built from over 65 million Internet records, showing that GRoot is effective at

finding bugs and verifying large configurations.

5.1 Motivating Example

I explained how a DNS query is resolved in Section 1.1 in a simple fashion without showing

the zone files at the nameservers. In this section, I will explain how different record types and

nondeterminism can lead to different answers and how difficult it can get to reason about

the possible behaviors with the help of an example. Consider the configuration zone files

shown in Figure 5.1, which are based on real records I observed in practice (simplified and

anonymized for presentation). There are five zone files spread across three different name-

servers (a.gtld-servers.net, ns1.fnni.com, and ns2.fnni.net). Each nameserver serves one

or more zones (e.g., mybankcard.com and bankcard.com), and is configured to hold a set of

resource records in each zone. I depict each record with an accompanying label (e.g., a ) and

refer to those labels when discussing a record.
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nameserver: a.gtld-servers.net.

$ORIGIN com.

mybankcard.com. NS ns1.fnni.com. a
mybankcard.com. NS ns2.fnni.net. b

ns1.fnni.com. A 216.205.207.204 c

nameserver: ns1.fnni.com.

$ORIGIN mybankcard.com.

mybankcard.com. NS ns1.fnni.com. d
mybankcard.com. NS ns2.fnni.net. e
mybankcard.com. DNAME bankcard.com. f

$ORIGIN bankcard.com.

www.bankcard.com. AAAA 74d7::b94d:d07 g

www.bankcard.com. A 204.58.233.75 h
email.bankcard.com. A 66.161.21.26 i

∗.bankcard.com. A 204.58.233.244 j

nameserver: ns2.fnni.net.

$ORIGIN mybankcard.com.

mybankcard.com. NS ns1.fnni.net. k
mybankcard.com. NS ns2.fnni.net. l
mybankcard.com. DNAME bankcard.com. m

$ORIGIN bankcard.com.

www.bankcard.com. AAAA 74d7::b94d:d07 n
www.bankcard.com. A 204.58.233.75 o

email.bankcard.com. A 66.161.21.26 p

∗.bankcard.com. CNAME www.bankcard.com. q

Figure 5.1: Example zone files for three nameservers: a.gtld-servers.net, ns1.fnni.com, and

ns2.fnni.net. The query ⟨support.mybankcard.com, A⟩ has two possible executions: one for records

⟨a, f, j⟩ and another for ⟨b,m, q, o⟩.
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Suppose a user issues a DNS query for the IP address of the do-

main name support.mybankcard.com. The query is represented as the tuple

⟨support.mybankcard.com, A⟩, where A represents the IPv4 record type. Assuming

the answer is not already cached, the resolver will issue the query to a known default

nameserver, for instance a.gtld-servers.net in this example. The nameserver is now

responsible for answering this query, either by answering directly, or by referring the resolver

to other nameservers.

To do so, the nameserver will lookup the closest matching records for the query (roughly

speaking the records with the longest matching prefix). For support.mybankcard.com, this

will be the NS records with domain name mybankcard.com { a , b }. The nameserver will

respond with both records, which indicate the resolver should continue by asking another

nameserver (ns1.fnni.com or ns2.fnni.net). In this particular case, the nameserver will also

include c (glue record) in its response, the IPv4 address to reach ns1.fnni.com, according

to the wider definition of Bailiwick rule [HSF19] (a.gtld-servers.net includes the IPv4

records for the referred nameserver even if under a sibling domain (fnni.com)).

After receiving a response from a.gtld-servers.net, the resolver will then nondetermin-

istically chose one of the two new nameservers to ask next. In practice, this decision is often

influenced by heuristics such as the estimated RTT to the nameserver. Suppose the resolver

chooses to query ns1.fnni.com next. The same query support.mybankcard.com is sent to the

nameserver, which hosts two zones (mybankcard.com and bankcard.com). The nameserver

will choose the closest matching zone (mybankcard.com) and then proceed as before. This

time, the most relevant record is the DNAME record f . A DNAME record performs a query

rewrite, in this case to redirect the user to bankcard.com. Specifically, f will rewrite the query

prefix mybankcard.com to bankcard.com, yielding the new query support.bankcard.com.

The nameserver will now re-evaluate this new query since it has a configuration locally

for the zone bankcard.com. This zone has IP records for the domains www.bankcard.com and

email.bankcard.com, but not for support.bankcard.com. As such, the query will match the
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wildcard record j . Wildcard records (with ∗) match domain names with a shared prefix that

are not matched by other records (Section 2.4). Thus, the nameserver will return an answer

with an IP address 204.58.233.244.

5.1.1 DNS Configuration Challenges

Authoring and maintaining correct DNS configurations is challenging for several reasons.

First, the protocol is inherently nondeterministic. In the above example, if the resolver had

chosen to send the query to the nameserver ns2.fnni.net instead of ns1.fnni.com, then after

several steps, DNS would match the query with the wildcard record q . The CNAME record

type (canonical name) performs a rewrite without preserving the query suffix, so the query

becomes www.bankcard.com and finally matches record o , which provides the IP address

204.58.233.75, differing from the result above.

Second, as the example shows, the DNS protocol is intricate and subtle, involving multiple

types of records and complex dependencies among these records due to behaviors such as

query rewriting. Both CNAME and DNAME rewrites provide a level of indirection to allow efficient

handling of change. For example, DNAME records can help when multiple subtrees of the DNS

need to be the same. CNAME records are useful when users have to be redirected to the same

information from different domains as in example.com and www.example.com. Though DNAME

records are a bit rare, CNAME records are pervasive, and CNAME chains are used extensively by

CDNs to accelerate the efficiency of content delivery [SCK06, WH97, Gle18].

Third, DNS is managed as a collection of distributed zone files, under the control of

different organizations. Finally, all of these issues arise in the context of understanding a

single DNS query, but operators must ensure that all possible queries behave as intended.

For all of these reasons, it is no surprise that configuration changes and operator mistakes

are at the heart of many large-scale DNS outages in the past [Tun19, Fry14, Inf19, Yor15,

New10, Zel13] (Section 1.3). Indeed, there are many ways in which DNS behavior can go
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Bug Description

Delegation Inconsistency The parent and child zone files do not have the same set
of NS and A (glue) records for delegation

Lame Delegation A name server that is authoritative for a zone does not
provide authoritative answers

Missing Glue Records The zone file is missing required “glue” A or AAAA records
for nameservers in NS records

Non-Existent Domain for Service DNS returns the NXDOMAIN answer for a known service
(e.g., ucla.edu)

Cyclic Zone Dependency Resolving a query for zone Z1 depends on Z2, which
depends on Z1

Rewrite Loop There exists a query that is rewritten in a loop q1 → q2 →
q3 → . . . → q1

Query Exceeds Maximum Length There exists a query q1 is that is eventually rewritten to
qn which exceeds the max label or domain length

Answer Inconsistency Different executions in DNS result in different answers
Zero Time To Live There exists a query which will return a resource record

with the TTL set to 0, which prevents caching
Rewrite Blackholing There exists a query q1 that is eventually rewritten to qn

which does not exist and DNS returns NXDOMAIN

Table 5.1: Sample subset of possible bugs. Several are taken from previous work [PFM04] while I

proposed the rest.

wrong, in addition to nondeterministically returning different answers as shown above. For

example, a configuration mistake might result in DNS returning NXDOMAIN (non-existent

domain) for a popular service, which can result in a loss of connectivity, as was the case in the

Azure outage [Tun19]. As another example, a query might get stuck in a rewrite loop. Table 5.1

summarizes several common kinds of DNS misconfigurations. Section 5.7 demonstrates my

tool GRoot’s effectiveness in finding such errors in real-world DNS configurations.
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5.2 A Fast Verification Algorithm

I leverage the model in Chapter 3 to present a fast verification algorithm based on the

enumeration of query equivalence classes (ECs).

5.2.1 Equivalence Class Generation

The idea with my approach is that, instead of enumerating all possible queries, we can

construct a collection of equivalence classes of queries (sets of queries that will be resolved

the same way by DNS). Intuitively, two DNS queries are in the same EC if the queries are

resolved locally in the same way (and rewritten similarly) at every nameserver. I define this

notion of equivalence more formally and prove that it is correct in Section 5.5. The set of

ECs our algorithm computes need not be, and indeed is not, always minimal.

Other verification tools such as Veriflow [KZC12] and Atomic Predicates [YL16, YL17] use

a similar approach in the context of packet forwarding. However, Veriflow’s technique does

not support query rewrites, which we require in the context of DNS. Atomic Predicates does

support query rewrites but is overly general for our purposes and hence more expensive than

necessary. For example, even in the absence of rewrites, using Atomic Predicates to compute

ECs for DNS would require a quadratic number of predicate intersections. In contrast, I

leverage the hierarchical, tree-like structure of domain names to reduce this cost. Specifically,

I show in Section 5.5 that in the absence of DNAME rewrites, our approach computes the set of

ECs in linear time.

5.2.2 Label graph construction

As a first step to generate query ECs, my algorithm builds a label graph, which is the union

of the domain names of all the records that appear in any zone file at any nameserver.

Consider again the running example from Figure 5.1: the corresponding label graph is shown

in Figure 5.2. The label graph is rooted at ϵ and every domain name that appears as the key
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ϵ

com

bankcard

www

α

email

α

∗

α

α

mybankcard

α

fnni

ns1

α

α

α

α

Figure 5.2: Label Graph used for equivalence class generation for the zone files from Figure 5.1. Note,

only the domain name (d) field of the records are used but not the answer (a) field. The dotted red edge

represents the DNAME redirection of f .

of some resource record in some zone file is represented in the graph as a path (sequence of

labels) starting from the root. For instance, nameserver ns1.fnni.com has a DNAME record for

mybankcard.com, so mybankcard shows up as a node beneath the node for com.

For DNAME records, I also add the rewrite target for the record to the label graph, along

with a dashed line between the source and target: because the answer for the mybankcard.com

DNAME record is bankcard.com, a line appears from mybankcard to bankcard.

Finally, for every node (label) in the graph, I add an α child, which represents an arbitrary

sequence of labels α = lk ◦ . . . ◦ l0 such that l0 is unique from its siblings.

5.2.3 Path enumeration

Every path through the label graph from the root corresponds to several equivalence classes,

one for each query type. The algorithm begins by enumerating all paths starting from the

root. Whenever it encounters α, it constrains it to exclude its siblings. For the example in

Figure 5.1, we start to compute the following ECs, one for each type t ∈ TYPE:
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(1) ⟨ϵ, t⟩

(2) ⟨com ◦ ϵ, t⟩

(3) ⟨bankcard ◦ com ◦ ϵ, t⟩

(4) ⟨www ◦ bankcard ◦ com ◦ ϵ, t⟩

(5) ⟨α ◦ www ◦ bankcard ◦ com ◦ ϵ, t⟩

(6) ⟨email ◦ bankcard ◦ com ◦ ϵ, t⟩

(7) ⟨α ◦ email ◦ bankcard ◦ com ◦ ϵ, t⟩

At this point, the algorithm encounters the wildcard (∗) label under bankcard. For the

purposes of building the label graph, I simply treat wildcards as character labels (‘∗’), as such

characters are valid and will experience an exact match with a wildcard record. I instead use

the α labels to represent ECs for domains not explicitly mentioned in the zone files. At this

point, the algorithm produces the ECs:

(8) ⟨∗ ◦ bankcard ◦ com ◦ ϵ, t⟩

(9) ⟨α ◦ ∗ ◦ bankcard ◦ com ◦ ϵ, t⟩

(10) ⟨α ◦ bankcard ◦ com ◦ ϵ, t⟩ α[0] ̸∈ {www, email, ∗}

5.2.4 DNAME rewrites

The next paths traversed are those for mybankcard.com. Since mybankcard has a DNAME

record, I continue enumerating paths through the dashed edge. However, since we want to

capture the input query before the transformation, I do not concatenate the target of the

rewrite to the path. This results in a set of ECs that are analogous to those for bankcard.com.

(11) ⟨mybankcard ◦ com ◦ ϵ, t⟩
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(12) ⟨www ◦ mybankcard ◦ com ◦ ϵ, t⟩

(13) ⟨α ◦ www ◦ mybankcard ◦ com ◦ ϵ, t⟩

(14) ⟨email ◦ mybankcard ◦ com ◦ ϵ, t⟩

(15) ⟨α ◦ email ◦ mybankcard ◦ com ◦ ϵ, t⟩

(16) ⟨∗ ◦ mybankcard ◦ com ◦ ϵ, t⟩

(17) ⟨α ◦ ∗ ◦ mybankcard ◦ com ◦ ϵ, t⟩

(18) ⟨α ◦ mybankcard ◦ com ◦ ϵ, t⟩ α[0] ̸∈ {www, email, ∗}

The algorithm would similarly continue to explore paths for fnni.com and terminates

with the EC, ⟨α ◦ ϵ, t⟩, α[0] ̸∈ {com}.

5.2.5 DNAME loops

The label graph can have loops due to DNAME edges. The first type of loop has both solid and

dotted edges; for example, this type of loop would exist if there were another DNAME edge

from email to mybankcard. In such cases, the algorithm traverses the loop and continues to

generate ECs until the domain name of the path exceeds the maximum length allowed by

DNS. With our example loop, suppose the algorithm takes the DNAME edge from mybankcard

node and reaches email. After generating the EC given by (14), it would take the dotted

edge back to mybankcard and then the dotted edge back to bankcard. It then traverses the

paths underneath bankcard but with the original query prefix before rewriting, so it will

generate ⟨www ◦ email ◦ mybankcard ◦ com ◦ ϵ, t⟩, ⟨α ◦ www ◦ email ◦ mybankcard ◦ com ◦ ϵ, t⟩,
and so on.

The second type of loop is entirely made up of dotted edges, for example if bankcard

had a dotted edge back to mybankcard. This situation can arise if there is another zone

file for bankcard ◦ com ◦ ϵ at a different nameserver with this DNAME record. This situation
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constitutes an infinite loop since the length of the path never increases once the query enters

the loop. To check for an infinite loop, each node in the label graph stores the path length

when the algorithm enters the node and checks if the stored length is equal to the new path

length before updating. As soon as the algorithm detects an infinite loop, it backtracks and

continues.

5.3 Symbolic Execution of ECs

To determine the behavior of the equivalence classes, I symbolically execute each EC using

semantics from Figures 3.1, 3.2 and 3.3. To symbolically execute an EC that starts with

α, we observe that by construction α cannot match any of the records present at a given

zone file except a wildcard. Therefore, we can leave α opaque during symbolic execution

and simply use this knowledge to precisely determine the answers for such an EC. Our

symbolic execution algorithm builds an interpretation graph for each EC, representing all

nondeterministic execution traces that are possible in DNS for that EC. Each node in an

interpretation graph represents a call to the second Resolve function and the node stores the

nameserver s identified by d, the query q, and the answer a returned by the ServerLookup

function. An edge is drawn from one node to the other if the Resolve at the parent node

returns a Ref to the nameserver of the child node.

Symbolically executing an EC separately for each query type leads to an inefficient

implementation; DNS supports dozens of record types, and there is substantial overlap in

how they are treated during execution. Therefore, GRoot executes the ECs for all record

types at once using a compact bitset representation for types, splitting nodes when different

types experience different behaviors according to Figures 3.2 and 3.3. The result is a single

graph representing multiple interpretation graphs.

Figure 5.3 shows the result of symbolic execution for the running example for three equiv-

alence classes, which are compactly represented as: ⟨α ◦ mybankcard ◦ com ◦ ϵ, {A, MX, TXT}⟩.
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I show just these three records types for simplicity. The execution starts at

a.gtld− servers.net and then proceeds to either ns1.fnni.com or ns2.fnni.com from NS

referrals. In either case, the execution has a DNAME rewrite before eventually splitting the

record types into two cases: one for {A} and another one for {MX, TXT} to capture the diverging

behaviors. GRoot encodes the relevant set of types at each node using a fixed-size bitset,

with one bit per type.

5.4 Checking Properties

The representation for ECs and their interpretation graphs facilitates efficient checking for a

wide variety of properties. I write property checkers as custom graph algorithms (Section 5.6)

that process each of the interpretation graphs. A property that is true of all interpretation

graphs holds for all possible executions of Resolve, for all possible queries. Table 5.2

summarizes the implementation of checkers for the bugs listed in Table 5.1. Because the

interpretation graph contains full information about the execution traces, it can also be used

to enforce non-functional properties, for example related to performance, such as a bound on

the number of rewrites in any execution of Resolve.

5.5 Proof of Correctness

I prove my approach with GRoot is correct in two steps. First, I show that my equivalence

class generation algorithm computes classes of queries that adhere to a restrictive notion of

equivalence called strong equivalence. Next, I prove that strong equivalence implies equivalence

for DNS resolution.

A challenge for defining equivalence of DNS resolution is that queries that match all

the same zone records can still end up with different answers due to record synthesis (Syn

from Figure 3.1), which generates specialized records for use in the cache. For example, two
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Bug Description

Delegation Inconsistency A parent node with the Ref tag and a child node with
the Ans tag do not have the same set of NS and A records
for delegation.

Lame Delegation Interpretation graph has a node with the Refused tag.
Missing Glue Records Node answer contains NS records but not the A (glue)

records.
Non-Existent Domain for Service Sink node return an answer with the NX tag.
Cyclic Zone Dependency Interpretation graph contains a cycle
Rewrite Loop Interpretation graph contains a cycle with at least one

rewrite.
Query Exceeds Maximum Length Query at some node exceeds the maximum label or total

length.
Answer Inconsistency Different sink nodes return different answers.
Zero Time To Live Sink node returns an answer with TTL value set to 0.
Rewrite Blackholing A path has a rewrite and ends at a node with NX tag.

Table 5.2: Bug finding implementation for Table 5.1.

queries with domain names a.mybankcard.com and b.mybankcard.com may both match the

wildcard record ∗.mybankcard.com, which will generate new records, one for a and one for b

with the exact query names. Since we do not model the effect of caching in this work, I want

to prove equivalence of DNS resolution up to such differences. To do so, I define a notion

of equivalence between answers that ignores synthesized records. In particular, I define a

relation a1 ≈ a2 to mean two answers are equivalent up to synthesized records. For brevity, I

defer defining ≈ to the appendix.

I now describe our strong equivalence relation. Strong equivalence views queries as

equivalent if they are treated equivalently at each individual nameserver s, even if that

nameserver can never be contacted with that particular query.

Definition 5.1 (Strong equivalence). For a given configuration C = ⟨S,Θ,Γ,Ω⟩, the binary

relation ∼C on queries, which we call the strong equivalence relation, is the greatest relation
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such that q1 ∼C q2 implies that for all servers s ∈ S, where ai = ServerLookup(Γ(s), qi),

we have

1. N (Γ(s), q1) = N (Γ(s), q2),

2. a1 ≈ a2, and

3. for any rewrites q′1 ∈ query(a1) and q′2 ∈ query(a2), q′1 ∼C q′2.

The next step in proving my approach is correct, is to show that the algorithm presented

in Section 5.2.1 computes equivalence classes of queries satisfying the ∼C relation.

Theorem 5.1 (EC generation sound). For a given configuration C = ⟨S,Θ,Γ,Ω⟩, if two

queries q1 and q2 are in the same EC computed by the algorithm, then q1 ∼C q2.

Proof. Direct by case analysis of ServerLookup. Full proof is included in the appendix.

Theorem 5.2 (Soundness). For all C, q1, q2, and k, if q1 ∼C q2, then Resolve(q1, C, k) ≈
Resolve(q2, C, k).

Proof. I start by proving a slightly stronger invariant: Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) ≈
Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i) for all s, i, and show that it implies the result. The proof given

in appendix proceeds by induction on the length of resolution step i.

In the appendix, I also prove two other theorems about my technique. First I prove a

completeness result.

Theorem 5.3 (Completeness). For a configuration C, each query q belongs to at least one

computed equivalence class.

Together, soundness and completeness imply that my technique indeed performs verifica-

tion: all possible queries are represented by the ECs, and all queries within an EC have the

same behavior.
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Second, I prove that, in the absence of DNAME rewrites, my algorithm will compute a linear

number of ECs in linear time with respect to the number of zone records. Given that CNAME

rewrites are comparatively much more common that DNAMEs in practice (Section 5.7), this

result implies that in many cases GRoot can verify DNS configurations very efficiently.

Theorem 5.4 (Linear time). In the absence of DNAME records, for a collection of zone files

with n resource records, my algorithm computes O(n) equivalence classes in O(n) time.

Given that the total number of possible DNS queries is
∑253

i=0 38
i (for 38 valid characters),

this theorem shows that GRoot can provide a massive reduction in complexity.

5.6 Implementation

GRoot is implemented in over 2100 lines of C++ code and uses the Boost Graph Li-

brary [Bem05] as well as custom zone file parsers. GRoot takes as input a directory

containing a collection of zone files as well as an optional file specifying what properties

to check. In the absence of this properties file, GRoot checks for a set of bugs that are

considered always harmful (e.g., rewrite blackholing and loops).

Users implement new static analyses in GRoot as simple C++ functions that process an

interpretation graph. To make this easier, I provide three separate checker APIs. The first

lets the user process each node in the interpretation graph in isolation, which can be used for

simple checks such as: “query X should never return NXDOMAIN”. The second lets the user

process each path through the graph in isolation, and the third provides the entire graph.

Since each interpretation graph is checked separately by a property checker, the graphs

can be checked in parallel. Our implementation takes advantage of this and also pipelines

EC generation with symbolic execution: as soon as an EC is generated, GRoot uses an idle

worker thread to build the interpretation graph for that EC and checks the properties on the

resulting graph.
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Since strings are used pervasively in GRoot to represent labels in the zone graphs, label

graph, and interpretation graph, and since adding new records to each of these graphs involves

multiple string comparisons, I opted to use a custom string interning strategy that replaces

string labels with unique ids, for faster operations.

GRoot is available as open source software1.

5.7 Evaluation

To evaluate GRoot, I aim to show -

1. it can find bugs in real DNS configurations, and

2. it can scale to large sets of zone files

I describe my methodology and results next. I evaluate GRoot on zone files from three

networks:

A university network. I ran GRoot on the DNS configurations obtained from a large

campus network. The configurations for the network are managed in a decentralized fashion:

the campus IT service manages the DNS tree starting from the subdomain campus.edu2. The

campus.edu zone has four authoritative nameservers (ns{1, 2, 3, 4}.dns.campus.edu), which

are slaves of a hidden master server. The Infoblox platform [Inf22] is used to maintain the

master server and keep the slaves up-to-date. The campus.edu zone file has delegations for

1850 subdomains and each department in the university is responsible for managing a subset

of those subdomains. Of these subdomains, 895 have secondaried their zones back to the four

campus nameservers, which also provide authoritative answers for queries related to those

subdomains. The remaining 955 subdomains require delegation via NS records.

1 https://github.com/dns-groot/groot

2 The university name is anonymized as "campus."
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I use the campus.edu zone file and the zone files of the 895 subdomains that are secondaried

by the campus nameservers for my experiments, since I am able to obtain these zone files

through zone transfers. In total the campus.edu zone file has 8555 records and there are

a total of 111,539 records across the remaining 895 subdomains. Figure 5.4(a) shows the

cumulative distribution of subdomains to the number of resource records that they contain.

An infrastructure service provider. I ran GRoot on 1241 internal zone files of a large

infrastructure service provider. All the zones were independent i.e., there isn’t a zone that is

a subdomain of another zone in the dataset. All of the zone files are assumed to be taken

from a single name server. The data set consists of around 3.6 million resource records with

the largest zone file accounting for 1.6 million records.

DNS census data. This data set is publicly available [DNS13]. It consists of around

2.6 billion resource records (157 GB) that were collected through live DNS queries in

2012-2013. These records are stored as CSV files — one file for each DNS record type

(A, AAAA, CNAME, DNAME, MX, NS, SOA, TXT). These records are stored lexicographically: by host-

name and time. For each hostname and each type, I picked the resource records corresponding

to the latest timestamp. This leaves 1.05 billion resource records. I partition this set into

zone files by using the SOA records and the DNS namespace hierarchy.

While creating the zones I also added NS records along with the necessary glue records to

both parent and child so that there will not be any delegation inconsistencies or lame delegation.

The dataset consists of 285 top-level domains (TLDs). For my experiments, I considered all

the second-level domains (for example, co.uk.) that have at least one subdomain zone file

under them. There are 1,368,523 such domains totalling over 65 million resource records. The

synthesized dataset and the software artifact are available on Zenodo [KBA20b]. Figure 5.4(b)

shows the distribution of second-level domains to the number of subzones they contain.

Features used. Table 5.3 shows a summary of the features used in the three datasets. For

the campus network, there were 63 wildcard records and over 4000 CNAME records. However,
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Figure 5.4: Dataset statistics. (a) Cumulative number of subdomains with a number of resource records

in the campus network. (b) Number of 2nd-level domains with a given number of subzones for DNS

census.

Dataset Campus Service Provider Census
SOA 895 1,239 6,668,062
A 97,951 110,052 18,598,682
NS 9,209 8,740 29,855,307

CNAME 4,259 3,442,892 2,168,115
DNAME 0 0 218
MX 1,978 1,878 6,965,866
TXT 363 1,339 1,301,472

Wildcard 63 2,059 0
Other 883 3,586 118,629

Table 5.3: Summary of features used in the three datasets studied.

the configurations did not make use of DNAME records. In contrast, the part of the DNS

census dataset that I used included over 200 DNAME records and over 2 million CNAME records.

However, it did not have any wildcards. This is likely due to the dataset being collected from
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live DNS queries, which are almost never directly for wildcard resources. The service provider

dataset is dominated by the CNAME records as the provider employs CNAME chains frequently

to map queries.

5.7.1 Functionality Experiments

5.7.1.1 University network

I use the data from the university network to evaluate whether GRoot can find bugs on

a real network. I performed two different classes of checks using GRoot (summarized in

Table 5.4) based on properties described in Table 5.1. For the properties in Table 5.1 but

not in Table 5.4, GRoot was not applicable for this network (e.g., answer inconsistency due

to master-slave replication). Properties shown below the dashed line showcase GRoot’s

ability to help operators explore and understand the behavior of their DNS configurations.

Violations of these properties are not necessarily bugs but are interesting behaviors that an

operator may be interested to examine. For example, I used GRoot to identify lookups

that involve rewrites outside of the campus domain — most are (likely) intentional. Because

GRoot is complete, it reported all possible ways in which such rewrites can occur.

Property Violations. Violations of the first seven properties in Table 5.4 represent true

misconfigurations and are common operational and configuration errors described in RFC

1912 [Bar96]. I contacted operators, and those that responded confirmed our findings (because

DNS management is decentralized there are many administrators responsible for these domains

and I did not hear back from all of them). I discuss some example violations here:

GRoot flagged 49 domains of the form α.campus.edu that have a delegation inconsistency.

These 49 domains are managed by 25 different administrators. I emailed all of them (obtaining

email addresses from the SOA records); seven emails bounced, and nine people responded, in

all cases acknowledging the inconsistency as a misconfiguration. Some of the NS records in

the campus.edu were incorrectly pointing to a web server instead of the zone’s authoritative
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Property Number of issues

Delegation Consistency 49⋆

No lame delegation 9⋆

No rewrite loops 2⋆

No missing glue records 1⋆

No rewrite blackholing 48⋆

No query exceeds maximum length 0⋆

No zero TTL 0⋆

No rewrite to outside domain 378†

No resolution at an external NS 324†

Number of rewrites ≤ 2 24†

Table 5.4: Properties checked on the campus network and the number of cases GRoot reported. Cases

in red (⋆) are bugs while orange(†) are warnings.

name server. One operator commented: “we haven’t noticed this discrepancy because we

almost never use DNS names for DNS servers, we use IPs.” Another operator explained: “the

short answer is negligence.”

Some of these violations affect performance. Lame delegation affects the mean response

time of DNS lookups: a lookup on some name servers will fail, meaning the resolver would

then need to contact a different name server. The same is true of rewrite loops where I

found CNAME records that were rewritten to the same record. In both cases of rewrite loops,

the relevant admins confirmed the misconfigurations and removed the corresponding entries.

Other forms of loops can also add to resolution latency. This was the case for the missing

glue record bug where a resource record

dept.campus.edu NS dc1.dept.campus.edu

existed but had no A record for dc1.dept.campus.edu. Resolving dc1.dept.campus.edu would

lead the resolver to lookup the IP address, only to end up back at this record. GRoot
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flagged 48 domain names that were rewritten to a domain name not existing in the zone

files, causing DNS to return NXDOMAIN. When asked, the operators replied, “they are CNAME

entries that were missed during a prior retirement. These are entries that were orphaned

accidentally when the source server was removed a few years back. Our tools do not auto

clean up the CNAME aliases and this sometimes occurs. We do not actively black-hole server

DNS entries.”

GRoot found out that there is no input query that can lead to the violation of the last

two properties in this network.

Configuration Understanding. The properties at the bottom of Table 5.4 demonstrate

GRoot’s utility for understanding and exploring configurations. For example, GRoot found

378 cases where the query is rewritten to a domain that is not a subdomain of campus.edu.

GRoot guarantees that these 378 are the only cases under campus.edu that can be rewritten

to outside domains. Hence an admin can manually or automatically inspect the results to

spot errors or ensure policy is respected, with the assurance that all possible scenarios are

covered.

In fact, the other two properties that I checked with GRoot identified actual misconfigu-

rations. One check identified lookups that use a name server not under campus.edu. Most

of these nameservers belong to AWS or Cloudfare and are likely intentional. But one name

server was α.campus.ed which looked suspicious; when asked the admin said: “Thanks for

the information about the delegation. I’ve corrected the typo.”

The other check identified 24 queries that are rewritten more than twice during lookup.

This is unusual as the RFC [Moc87a] suggests CNAME should point at the primary name and

not an alias. Long CNAME chains increase the query response time and can lead to loops.

Further, certain resolvers do not follow a chain if the length increases beyond a threshold

and instead return ServFail [BR18].
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Figure 5.5: Total time to build label graph and check for properties for the 1,368,523 second-level TLDs.

The median time is taken when multiple domains have the same number of resource records.

5.7.1.2 Service Provider

I also performed checks based on the properties described in Table 5.1 on the zone files

from the service provider. Since there are no parent-child zones in the data set, all the

violations GRoot flagged were related to rewrite blackholing. GRoot flagged around 160k

interpretation graphs out of 9.2 million as experiencing rewrite blackholing. Upon further

investigation with the service provider, they informed us that nearly all the cases are due to

incomplete decommissioning of host names that are no longer in use.

5.7.2 Performance Experiments

All experiments were run on an 8-core Intel i7 processor with 32GB of RAM running Windows

10 using 8 threads. On the campus network data the total time to parse all of the zone files

and build the label and zone graphs was 1.5 seconds. GRoot generated 212,113 graphs and

checked properties for the graphs in 7 seconds. The label graph used to generate equivalence

classes had 105,030 nodes with 105,029 edges and the interpretation graphs generated had
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on average 6 nodes with 5 edges while the maximum graph size was 17 nodes. The median

graph size was also around 6 nodes.

I next explore the ability of GRoot to scale to larger zone files by checking the same

properties on the DNS census data.

Figure 5.5 shows the time taken in seconds by GRoot for building the label graph and

checking the properties for the 1,368,523 domains. The median time is taken when multiple

domains have the same number of resource records. The total time increases roughly linearly

with the number of resource records. The two other secondary factors which affect the

running time are the number of subdomains and the average size of the interpretation graphs

built. The more the number of subdomains and the larger the graphs built, GRoot takes

longer to finish. The figure also shows that GRoot can scale to tens of millions of records.

5.8 Discussion

To my knowledge GRoot is the first tool that allows operators to verify the correctness of

their DNS configuration (zone) files, or those of their hosted customers.

Incremental deployment. GRoot can be incrementally deployed for several reasons.

First, operators can independently verify their local zone files. Second, companies such as

Akamai, Microsoft, Google, and Amazon not only manage their own DNS but also that

of their customers [Ama10, Mic20, Goo22, Aka20]. Hence, these companies have a greater

opportunity and incentive to verify customer configurations on their behalf, making it much

easier for those customers to leverage GRoot as well.

Static not dynamic bugs. As a “compile time” checker, GRoot does not model dynamic

phenomena that affect DNS results such as caching, server failures, and network unreachability.

GRoot must be complemented by live testing tools to account for bugs caused by such

phenomena.
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Local not global correctness. Because GRoot can only analyze the zone files that it is

given, it can only verify the correctness of the DNS configuration of the organization that

owns those files. The end-to-end correctness of the DNS configuration (globally) hinges on

other organizations doing the same.

Snapshot not incremental. GRoot verifies a snapshot of the current zone files which

may be inefficient when changes to zones files are small and frequent. I leave optimizing

GRoot for small incremental changes for future work.

Properties on single queries not multiple. My current implementation only supports

properties for individual DNS queries. However, my verification approach can be easily

modified to support properties over a set of queries, at the cost of increased memory and

execution times.

5.9 Related Work

GRoot is related to several prior lines of work - DNS testing, DNS modeling and network

verification.

I have already mentioned how DNS testing and monitoring approaches are insufficient

as they are incomplete, provides no guarantees and are reactive in Section 1.4.3 and in the

beginning of the chapter. Another popular approach relevant in this space is linting of DNS

configuration files. Tools like dnslint [Mic18] report possible violations of best practices in

configuration files based on a simple syntactic analysis of the files. Such tools can be effective

at discovering certain kinds of common misconfigurations but cannot perform deeper semantic

analysis (e.g., whether a query might resolve to non-existent domain, NXDOMAIN).

IRONSIDES [CF12], is a DNS server implementation that is provably robust to data

flow exceptions such as unexpected exceptions. However, as said earlier in Section 4.8,

IRONSIDES is a particular implementation of DNS and as such neither provides a formal

model for DNS nor can be used to verify DNS configurations.
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Network verification emerged as an exciting area at the intersection of networking,

programming languages, and formal methods in the past decade due to the rapid growth in

the scale and complexity of modern network and by the high frequency of outages [KVM12,

KZC12, MKA11, LBG15, FSF16, GVA16, BGM17]. However, it has been limited to verifying

the network routing layer. While there are some superficial similarities between routing and

DNS, the details are vastly different as various routing-specific insights were used to optimize

the developed tools. Therefore, those approaches are not directly suitable for DNS. For

certain cases, GRoot can generate equivalence classes asymptotically faster than approaches

used for routing verification due to the hierarchical structure of domain names.

5.10 Summary

In this chapter, I presented GRoot, the first verification tool for DNS configurations. Using

my formal model of the DNS, I described, and proved the correctness of, a fast algorithm

to generate equivalence classes of DNS queries. These equivalence classes enable GRoot

to efficiently, and exhaustively, check the correctness of DNS zone files. I demonstrated

how GRoot can check wide variety of properties by modeling the properties as graph

properties on the resulting symbolic execution graphs. Finally, I showed that GRoot can

efficiently analyze real DNS configurations in practice, leading to the discovery of numerous

misconfigurations.

My formal model and tool GRoot could be used to prevent potential attacks against

DNS infrastructure (e.g., input queries that result in the most work possible being performed)

as one can check if there is any input query that can lead to an attack. On the flip side, if an

attacker has access to the tool and the organization’s zone files, they could also do the same.

However, gaining access to an organization’s internal zone files is inherently difficult.
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CHAPTER 6

DNS Complexity Analysis

In the previous chapters, I have described techniques and tools to handle DNS protocol

implementation errors and configuration errors. The main reason for requiring such elaborate

techniques presented in the last chapters is that DNS has grown from its intended simple

distributed key-value store into a complex beast with many intricate and subtle features.

New record types and protocol features are proposed frequently and added to the protocol to

enable realistic use cases without considering the collective impact such extensions can have

on the broader system through their mutual interactions.

The prior work has shown that network protocols indeed have surprising and accidental

complexity. The best example of accidental complexity in the network protocols is in the

Border Gateway Protocol (BGP) [RHL06]. Designed to enable routing over the Internet

among organizations with different, often conflicting policies, BGP was created to support an

extremely rich set of policies. It took many years for theoreticians to “catch up” to practice,

demonstrating that the seemingly simple policy mechanisms in BGP can be used to simulate

an arbitrary Turing machine [CCD13].

The theoretical complexity of a networked system is important because it has broad

ramifications related to the ease with which humans and machines can analyze the system.

For instance, even for finite network topologies, simply determining if BGP will converge is

NP-Complete [GSW02].

In this chapter, I analyze and understand the theoretical complexity of the DNS. Arguably,

DNS is as crucial and widely deployed as BGP, and understanding its complexity has
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implications on the cost of verification. Further, unlike BGP, DNS’s power can be directly

used by applications [Bri95, CK13].

As part of my investigation, I find that the DNS has surprising complexity. I first show

in Section 6.1 that DNAME rewriting [RW12b], a seemingly simple record type for domain

redirection, allows the DNS to recognize arbitrary regular languages encoded in the string

labels of the DNS query. Hence users can perform complex validation and lookup logic (e.g.,

string validation, domain filtering, parental controls, etc.) in the DNS itself as part of the

configurable records that are processed at authoritative nameservers.

Second in Section 6.2, I demonstrate that the expressiveness of the DNS is beyond that

of regular languages. Specifically, the combination of DNAME records and nondeterminism due

to nameserver delegation allows the DNS to encode both deterministic and nondeterministic

pushdown systems (PDS) [BEM97, BS95, RSJ05] and hence to generate strings of arbitrary

context-free grammars (e.g., strings of the form anbn). Section 6.3 discusses the consequences

of these results.

6.1 Deterministic Finite Automata

We first define a deterministic finite automaton (DFA) and then show how a DFA can be

encoded in DNS. We then give an example and conclude with potential applications.

A DFA is a machine with only a read-only tape which it reads from left to right without

changing direction. The finite control allows a DFA to read one input symbol from the input

tape. Then based on the machine’s current state, it may change state. As part of each

computational step, the input tape head is repositioned one square further to the right to

allow it to read the next input symbol [Hat12]. A DFA is a finite-state machine that accepts

or rejects a given string of symbols, by running through a state sequence uniquely determined

by the input string [HMU06]. DFAs recognize exactly the set of regular languages – languages

that use regular expressions [HMU06].
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Formally, a deterministic finite automaton M is a quintuple M = (Q,Σ, δ, q0, F ) such that

Q is a finite set of states, Σ is a finite set of input symbols called the alphabet, δ : Q×Σ → Q

is the transition function, q0 ∈ Q is an initial or start state, and F ⊆ Q is a set of final or

accept states. The language of M, denoted L(M), is the set of strings whose processing by

M ends in a final state.

In a DFA, for a particular input symbol, the machine goes to one state only. For every

state, a transition is defined for every input symbol, i.e., they are complete. Null (or ϵ)

transitions are not allowed, i.e., a DFA cannot change state without any input symbol. A

nondeterministic finite automaton (NFA) is one that does not need to obey these restrictions,

but it is proven that NFA and DFA have the same computation power and an NFA can be

converted to a DFA using Rabin–Scott powerset construction algorithm [RS59].

While a DFA is a mathematical concept, it is often implemented in hardware and software

for solving specific problems such as lexical analysis in compilers and pattern matching. For

example, a DFA can model software that decides whether or not online user input such as

email addresses are syntactically valid.

6.1.1 Encoding an arbitrary DFA in DNS

Let M = (Q,Σ, δ, q0, F ) be any DFA. Let Q = {q0, q1, · · · , qn}, Σ = {a0, · · · , am}. We show

that M can be encoded in DNS using a single zone. Let the zone file be for the domain

dfa.com.. Intuitively, we use the DNS query to encode both the remaining input string and

the current state. We then use DNAME records to encode the transition relation and use TXT

records to encode the final accept/reject status.

The steps to encode a DFA M as a zone file z are:
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• Start: For each symbol ai in the alphabet, add a DNAME record of the form “ai DNAME

ai.q0”, where q0 is the start state.1 These records add the start state to the beginning

of the query without consuming any input.

• Transition: For each transition of the form qi × aj → qk in δ, add a DNAME record

“ai.qj DNAME qk”. These records consume an input symbol ai in a state qj and move

to the state qk. By the DNS semantics, these DNAME records only apply to a query if

it is a strict subdomain of ai.qj, so these records have the effect of transitioning the

system from the start state to the penultimate state, with one input symbol remaining.

• Decision: For each transition of the form qi × aj → qk, add a TXT record - “ aj.qi TXT

“accept”” if qk ∈ F ; otherwise add “aj.qi TXT “reject””. These records are the final

step in the transition system, where aj is the last input symbol and the system is in

state qi.

To test whether a given string S ∈ Σ∗ is accepted by the DFA M, we encode S = s0s1 · · · sn
as the domain name sn. · · · .s1.s0.dfa.com.. This query is then sent by the resolver to the

nameserver that contains the zone file z. The text record response will contain “accept” if

and only if the string S ∈ L(M).

6.1.2 Example

In this subsection, we show an example DFA and its encoding in DNS using the three steps

mentioned above. Consider the DFA MO over alphabet {a, b} shown in Figure 6.1, which

accepts all strings that contain an odd number of a’s.

Table 6.1 shows the encoding of DFA MO shown in Figure 6.1 in DNS as a zone file z.

To make it a valid zone, there must also exist an SOA and NS record for dfa.com., which are

omitted for brevity. To test whether the string abaa is accepted by the MO, we send the query

1 For exposition purposes we use relative domains here, which lack the trailing “.”: implicitly the zone
domain dfa.com. is appended to form the complete domain.
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b b
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Figure 6.1: An example DFA MO that accepts strings only if they contain an odd number of a’s

Start 1 a IN DNAME a.p

2 b IN DNAME b.p

Transition

3 a.p IN DNAME q

4 b.p IN DNAME p

5 a.q IN DNAME p

6 b.q IN DNAME q

Descision

7 a.p IN TXT “accept”

8 b.p IN TXT “reject”

9 a.q IN TXT “reject”

10 b.q IN TXT “accept”

Table 6.1: Zone file z showing the enconding of DFA MO shown in Figure 6.1.

⟨a.a.b.a.dfa.com., TXT⟩ to the nameserver serving z. The steps followed by the nameserver to

resolve the query are shown below.

⟨a.a.b.a, TXT⟩ ⟨a.a.b.a.p, TXT⟩ ⟨a.a.b.q, TXT⟩ ⟨a.a.q, TXT⟩ ⟨a.p, TXT⟩ 7
1 3 6 5

The nameserver returns the entire trace along with the TXT ( 7 ) record. Since the TXT record

received contains “accept” in its content, the string is accepted by MO. Thus, given any

DFA, it can be encoded in DNS with a single zone file, and to test whether a string belongs

to the language accepted by the DFA, one can send a DNS query to the nameserver serving

the zone file.

In practice, there are zone files with millions of records; therefore, complex DFAs with

many states and transitions can easily be encoded in DNS. We wrote a small script to
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encode a DFA in DNS and successfully tested it with two popular DNS implementations,

Bind [Con86] and Nsd [Lab02a]. In DNS, the domain name has certain length restrictions;

specifically, the domain name cannot be longer than 255 characters, and each label cannot be

more than 63 characters. The nameserver can also limit the number of rewrites that it will

perform on a query. However, various techniques can be used to overcome such limitations.

For example, we can map pairs of alphabet symbols from the DFA to single labels in DNS

and then change the encoding of the transition relation to consume multiple symbols at a

time, thereby processing longer DFA input strings.

6.1.3 Applications

Regexes are frequently used to validate user input for well-formedness. For example, the

regex “^[a-zA-Z0-9+_.-]+@[a-zA-Z0-9.-]+” is a simple validator for email addresses. Since

a regex can be represented as a DFA [Tho68], using the construction detailed in the previous

subsection we can validate if user input is a proper email address or not.

While the idea of using the DNS to check input well-formedness may seem far-fetched,

we believe that it could have some natural use cases. For example, organizations generally

want to control what domains their employees can visit while using their office devices, due

to security and various other reasons. If the allowed domains can be represented as a regular

expression, then this validation can be done in the DNS, as part of the DNS lookup for the

domain. Office devices are generally configured to use specific DNS resolvers. Therefore, the

resolver could first use our approach, with a local DNS nameserver implementing the policy

DFA, to check that the user’s DNS query is to an allowed domain, and only then send it to

the outside world in order to resolve it to an IP address. A similar setup could be used for

parental control in the home setting. Doing this directly in the DNS gives a single, global,

always-available vantage from which to enforce policies.
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6.2 Pushdown System

While the DNS can encode finite automata, its expressiveness goes beyond that of regular

languages. In this section, I show that the DNS can express nondeterministic pushdown

systems and by extension can generate strings in arbitrary context-free languages.

A pushdown system is a transition system equipped with a finite set of control locations

and a stack. The stack contains a word over some finite stack alphabet; its length is

unbounded. Hence, a pushdown system may have infinitely many reachable states. An

important use of pushdown system is in representing sequential programs with (possibly

recursive) functions [RLK07]. These programs in general cannot be modeled using finite-state

machines as there is no limit on the depth of the call stack for function calls [Sch02].

Definition 6.1. A pushdown system P = (P,Γ,∆, c0) is a quadruple, where P and Γ are

finite sets called the control locations and the stack alphabet, respectively. A configuration

of P is a pair ⟨p, w⟩, where p ∈ P and w ∈ Γ∗, and c0 is the initial configuration. The set of

all configurations is denoted by Conf(P). ∆ is a finite subset of (P × Γ)× (P × Γ∗), which

consists rules of the form ⟨p, γ⟩ ↪→P ⟨p′, w⟩, where p, p′ ∈ P, γ ∈ Γ, and w ∈ Γ∗. These rules

define the transition relation ⇒ between configurations of P as follows:

If ⟨p, γ⟩ ↪→P ⟨p′, w⟩, then ⟨p, γw′⟩ ⇒ ⟨p′, ww′⟩ for all w′ ∈ Γ∗.

As shown above, each step depends only on the control location (p) and the topmost element

(γ) of the stack (γw′). The rest of the stack (w′) is unchanged and has no influence on the

possible next actions.

6.2.1 Encoding a PDS in DNS

With the help of an example, we show how a PDS can be encoded in DNS. Similar to

how we encoded a DFA, we will encode both the stack and the current state in the query
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and use DNAME records to implement the transition relation. We employ multiple zone files

and nameservers and delegate among them to encode any nondeterminism in the transition

relation.

Consider a PDS P with P = {p, q}, Γ = {a, b, c, d}, c0 = ⟨p, c⟩ and ∆ given by:

r1 = ⟨p, a⟩ ↪→ ⟨q, b⟩ r2 = ⟨p, a⟩ ↪→ ⟨p, c⟩
r3 = ⟨q, b⟩ ↪→ ⟨p, d⟩ r4 = ⟨p, c⟩ ↪→ ⟨p, ad⟩
r5 = ⟨p, d⟩ ↪→ ⟨p, ϵ⟩

We show some transitions between different configurations of P starting with c0 and with

the rules given by ∆.

⟨p, c⟩ ⟨p, ad⟩
⟨q, bd⟩

⟨p, cd⟩

⟨p, dd⟩ ⟨p, d⟩ ⟨p, ϵ⟩ (i)

(ii)

(iii)

⟨p, add⟩
⟨q, bdd⟩

⟨p, cdd⟩

r4 r 1

r
2

r3 r5 r5

r4 r 1

r
2

As with the DFA encoding, we assume we control the pds.com. domain and all its subdo-

mains. We create the pds.com. zone file as shown below and place it in the server1.pds.com.

nameserver. The resolver is bootstrapped with the IP address of this nameserver.

In the pds.com. zone, we first encode all the deterministic rules, r3, r4, r5 with DNAME

records, 1 , 2 , and 3 . We then use DNS delegation (referral to a new nameserver) for each

nondeterministic set of rules. This apporach leverages the nondeterminism inherent in DNS

delegation – given multiple NS records, DNS implementations will chose one nondeterminis-

tically. Here we have only one set of nondeterministic rules, namely ⟨p, a⟩ with two rules.

For each rule, we create an NS record
(

4 and 5
)

and assign it a nameserver not previously

assigned. For each NS record, we also add a glue record
(

6 and 7
)

to provide the IP address

of the nameserver.
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nameserver: server1.pds.com.

$ORIGIN pds.com.

b.q DNAME d.p 1
c.p DNAME d.a.p 2
d.p DNAME p 3
a.p NS server2 4
a.p NS server3 5

server2 A 2.2.2.2 6
server3 A 3.3.3.3 7

We then create a zone file for a.p.pds.com. at each of the delegated nameservers and place

a DNAME record for each nondeterministic rule at a unique nameserver. In our example we

end up with two nameservers and zone files:

nameserver: server2.pds.com.

$ORIGIN a.p.pds.com.

a.p.pds.com. DNAME b.q.pds.com. 8

nameserver: server3.pds.com.

$ORIGIN a.p.pds.com.

a.p.pds.com. DNAME c.p.pds.com. 9

To execute the PDS from the initial configuration ⟨p, c⟩, we ask the DNS query ⟨β.c.p, TXT⟩.
As with the DFA, the query encodes the current stack followed by current state. Additionally,

we start the query with a dummy subdomain β. This is necessary since DNAME records only

apply to strict subdomains; doing so ensures that the DNAME records apply even when the

stack contains only a single element.

One possible execution starting from the query ⟨β.c.p, TXT⟩ at the resolver is as follows:

1. Resolver: Queries the default server Server1 with the query ⟨β.c.p, TXT⟩.
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2. Server1: The server first rewrites the query, and the best records for the new query are

NS records. The server returns the rewrite, the delegation records, and the corresponding

glue records to the resolver.

(a) R1 - ⟨β.c.p, TXT⟩ ⟨β.d.a.p, TXT⟩
2

(b) Delegation - 4 , 5 , 6 , and 7

3. Resolver: The resolver now has a choice to contact either Server2
(

4
)

or Server3
(

5
)
.

We show the sequence of steps if the resolver sends the query ⟨β.d.a.p, TXT⟩ to Server2.

4. Server2: Rewrites the query and returns it. R2 - ⟨β.d.a.p, TXT⟩ ⟨β.d.b.q, TXT⟩
8

5. Resolver: Queries Server1 again.

6. Server1: Rewrites the query three times and returns the final rewritten query(
⟨β.p, TXT⟩

)
to the resolver.

(a) R3 - ⟨β.d.b.q, TXT⟩ ⟨β.d.d.p, TXT⟩1

(b) R4 - ⟨β.d.d.p, TXT⟩ ⟨β.d.p, TXT⟩3

(c) R5 - ⟨β.d.p, TXT⟩ ⟨β.p, TXT⟩3

When the resolver gets the response from the Server1 in step 6, it is clear that the stack

is empty as the domain name has only the control symbol and the dummy subdomain we

added. If we put together all the rewrites (R1, R2, R3, R4, and R5) starting from the first

rewrite then we have the trace corresponding to the top trace (i) shown earlier in transitions

between different configurations in Section 6.1.2.

Next we show how a different set of configurations can be explored if the resolver instead

chose Server3 at step 4 above. The steps in that case would be:

4'. Server3: ⟨β.d.a.p, TXT⟩ ⟨β.d.c.p, TXT⟩
9

5'. Resolver: Queries Server1 with the rewritten query.
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6'. Server1: The server first rewrites the query (a) and the new query is again delegated.

The server returns both the steps and the records involved to the resolver as it doesn’t

remember any previous exchanges.

(a) ⟨β.d.c.p, TXT⟩ ⟨β.d.d.a.p, TXT⟩
2

(b) Delegation - 4 , 5 , 6 , and 7

The resolver now again has a choice, and different options lead to the configurations

(ii), (iii) shown earlier. If the number of rewrite steps becomes more than a threshold, the

nameserver can stop processing further and return the rewrites with a warning message to

the resolver. To overcome this limitation and explore more configurations, the resolver can

send a fresh query from the last stopped configuration instead of the initial configuration.

In this way we can use the DNS to explore the reachable configurations of a PDS. Generally

records returned to the resolver have a time to live (TTL) field for caching. The resolver

will use the local cache when a matching query comes, thus slowing down the exploration of

other configurations. We can avoid this by setting the TTL of the DNAME records to be small,

even to 0. Another issue is that nameservers often have a limit on the number of rewrites

they will perform, at which point they stop processing the query further and return it. To

overcome this limitation and explore more configurations, the resolver can then send a fresh

query from that last configuration.

So far, we have seen how to explore reachable configurations of a PDS using the DNS. In

the next subsection we will describe how we can use this capability to generate strings from

any context-free language.

6.2.2 Context-free Language Generator

A formal grammar is a set of production rules that describe all possible strings in a given

formal language. A context-free grammar (CFG) is a formal grammar whose production

rules are of the form “A → α”, with A being a single nonterminal symbol, and α a string
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of terminals and/or nonterminals (α can be empty). A formal grammar is “context free” if

its production rules can be applied regardless of the context of a nonterminal. Context-free

grammars generate context-free languages, which are strictly more expressive than regular

expressions. Context-free languages have many applications in programming languages; in

particular, most programming language syntaxes are specified by context-free grammars.

Formally, a context-free grammar G is defined as a 4-tuple G = (N,Σ, P, S), where N is a

finite set of non-terminal symbols, and Σ is a finite set of terminal symbols disjoint from N .

The set of terminals is the alphabet of the language defined by the grammar G. P is the set

of production rules and is a finite relation in N × (N ∪ Σ)∗. S is the start symbol and is one

of the non-terminal symbols in N .

We derive strings in the language of a CFG by starting with the start symbol and

repeatedly replacing some non-terminal by the right side of one of its production rules.

Consider the context-free language L = {anbn : n ≥ 1}. The grammar of this language, with

the start symbol S is:

S → aSb (6.1)

S → ab (6.2)

The string a3b3 in this language is generated by applying rule (4.1) twice followed by (4.2):

S → aSb → aaSbb → aaabbb.

We first describe a program variant of the above grammar and show how that program

can be represented using a pushdown system. Then based on the encoding described in

Section 6.2.1 we can implement this in the DNS.

A program that generates the strings in L is given in Figure 6.2. Here ℓ1, ℓ2, and other

such symbols are used to denote each program location (line of code) uniquely, which will be

later used as the stack alphabet Γ in our PDS. Since S is the start symbol in the grammar,
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procedure S1: procedure S2: procedure S:
ℓ1 output a ℓ5 output a ℓ8 if ?
ℓ2 call S ℓ6 output b ℓ9 call S1
ℓ3 output b ℓ7 return ℓ10 else call S2
ℓ4 return ℓ11 return

Figure 6.2: Program to generate strings in language L = {anbn : n ≥ 1}.

the procedure S would be called to start the program. The symbol “?” in ℓ8 represents

nondeterministic choice, reflecting the nondeterminism in the original grammar.

The technique used to convert the above grammar into a program can be generalized as

follows. Let G be a CFG. First, create a uniquely named procedure (disjoint from Σ ∪N) for

each production rule in P , as in S1 and S2 in the above example. The body of the procedure

then encodes the right side of the corresponding rule. Specifically, there is an “output t” line

for each terminal symbol t in the right side and a “call A” line for each non-terminal A in the

right side of the rule, in order of their appearance in the rule. Finally, for every non-terminal

A in N create a “procedure A” and use an if statement to nondeterministically call one of

the procedures created in the previous step whose corresponding rule has A on the left side.

We can create a PDS that encodes all possible executions of such a program [Sch02].

The PDS has a single control location and uses the program labels as the stack alphabet.

For example, a PDS PL for the program shown above has P = {p}, Γ = {ℓ1, · · · , ℓ11}, and

c0 = ⟨p, ℓ8⟩. ∆ is given by:

⟨p, ℓ1⟩ ↪→ ⟨p, ℓ2⟩ ⟨p, ℓ5⟩ ↪→ ⟨p, ℓ6⟩ ⟨p, ℓ8⟩ ↪→ ⟨p, ℓ9⟩
⟨p, ℓ2⟩ ↪→ ⟨p, ℓ8ℓ3⟩ ⟨p, ℓ6⟩ ↪→ ⟨p, ℓ7⟩ ⟨p, ℓ8⟩ ↪→ ⟨p, ℓ10⟩
⟨p, ℓ3⟩ ↪→ ⟨p, ℓ4⟩ ⟨p, ℓ7⟩ ↪→ ⟨p, ϵ⟩ ⟨p, ℓ9⟩ ↪→ ⟨p, ℓ1ℓ11⟩
⟨p, ℓ4⟩ ↪→ ⟨p, ϵ⟩ ⟨p, ℓ10⟩ ↪→ ⟨p, ℓ5ℓ11⟩

⟨p, ℓ11⟩ ↪→ ⟨p, ϵ⟩

Intuitively, ∆ encodes the control flow of the program. For statements where control

passes from one line to the next (here just output), we add rules of the form ⟨p, ℓ1⟩ ↪→ ⟨p, ℓ2⟩.
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⟨p, ℓ8⟩ ⟨p, ℓ9⟩ ⟨p, ℓ1ℓ11⟩ ⟨p, ℓ2ℓ11⟩ ⟨p, ℓ8ℓ3ℓ11⟩

⟨p, ℓ2ℓ11ℓ3ℓ11⟩ ⟨p, ℓ1ℓ11ℓ3ℓ11⟩ ⟨p, ℓ9ℓ3ℓ11⟩

⟨p, ℓ8ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ10ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ5ℓ11ℓ3ℓ11ℓ3ℓ11⟩

⟨p, ℓ11ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ7ℓ11ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ6ℓ11ℓ3ℓ11ℓ3ℓ11⟩

⟨p, ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ4ℓ11ℓ3ℓ11⟩ ⟨p, ℓ11ℓ3ℓ11⟩

⟨p, ϵ⟩ ⟨p, ℓ11⟩ ⟨p, ℓ4ℓ11⟩ ⟨p, ℓ3ℓ11⟩

Figure 6.3: The full trace of PDS PL that generates string a3b3. The output code lines that are on top

of the stack are shown with circles for a and squares for b.

A procedure call (for example, at ℓ2) is encoded by pushing the return point (ℓ3) followed by

the called procedure’s (ℓ8) starting statement. A return statement is encoded as a stack pop

(ϵ).

Finally, we can use this encoding to generate strings in our original CFG L. Define a

full trace in PL as the sequence of configurations starting with c0 and ending with an empty

stack. Given a full trace, consider the top symbol of the stack in each configuration, and

retain only those symbols that correspond to an output code line. If we concatenate the

output of those lines, then we obtain a string. The set of such strings is exactly the set of

strings defined by the CFG L.

For example, the full trace that would generate a3b3 is shown in Figure 6.3. In the trace,

among all the top stack elements only six symbols, shown with circles and squares, represent

output code lines. If we concatenate them in the order given by the full trace then we obtain

the string aaabbb.
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In summary, we have shown how to encode a PDS in DNS in Section 6.2.1, and here we

have shown how to encode a generator for a CFG as a PDS. Hence we can use the DNS

system to generate strings in the language of a given CFG.

6.3 Discussion

I presented an initial investigation into the complexity of DNS, and there are several directions

for future research.

Impact on DNS Verification. The most efficient algorithms known for PDS reachability

— determining whether a given configuration can be reached in a given PDS — have near-cubic

time complexity in the number of rules [EHR00, Cha08, CCP17, CO17, HM97]. Hence DNS

zone-file verification [KBA20a], which requires reasoning about all possible query lookups,

also has at least this complexity today. This has not only theoretical implications but is also

a problem for real zone-file verifiers like GRoot [KBA20a].

Even a simple four-record zone file with interacting DNAME loops can create close to a

million query equivalence classes in Groot as DNAME records can change the Label graph from

a tree to a graph as each DNAME record adds a directed edge to the label graph (Section 5.2.2).

Figure 6.4(a) shows an example zone file with two interacting DNAME records and Figure 6.4(b)

shows the corresponding Label graph GRoot constructs to generate query equivalence

classes for this zone file. This is a contrived example, and DNAME records are not frequently

used; therefore, GRoot will work very well in general cases. The loops in Figure 6.4(b) are

composed of both solid and dotted edges and are guaranteed to terminate when the domain

name of the path exceeds the maximum length allowed by DNS. But, the number of possible

domain names with the combinations of the three labels baz, bar, and zot quickly blow up

to more than a million. The time to check for a property on such zone files also blows up as

GRoot constructs an interpretation graph for each equivalence class.
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com. SOA . . .
foo.com. A 1.2.5.8

bar.foo.com. DNAME foo.com.
zot.baz.foo.com. DNAME foo.com.

(a)

ϵ

com

foo

baz

zot

α

α

bar

α

α

α

α

(b)

Figure 6.4: Example (a) zone file and the corresponding (b) Label graph GRoot constructs to generate

query equivalence classes. Due to the interacting DNAME loops in (b), GRoot generates more than a

million equivalence classes.

Interestingly, however, verification in Groot is linear time in the absence of DNAME

records. Can we design new verification algorithms that scale well with the number of DNAME

records for real-world configurations? I will give an intuition for such an algorithm using

model checking of PDS in Section 7.1.1.

Tighter Bounds. Can we show that the DNS is even more expressive than a PDS?

Alternatively can we reduce the DNS to a PDS and hence show that they are equivalent? I

believe DNS and PDS have the same power and are equivalent. I will briefly describe this

equivalence in the future work Section 7.1.1, as the complete proof is still a work in progress.

Applications. The applications that we have presented are somewhat contrived. Can

we build a real application that takes advantage of the complexity of DNS? We can take
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inspiration from existing applications that use the DNS, ranging from service discovery [CK13]

to load balancing [Bri95, Inc19] to spam filtering [DNS22a, KCH11, Kit14, DNS22b].

New Record Types. Contributors frequently add new drafts and RFCs to the DNS

specification, with new record types intended to enable new use cases. For example, the

recent NAPTR record type [Mea02] supports prioritized regular expressions that provide

lookup for dynamic resources. How do these newly proposed types affect DNS complexity?

Security Implications. Does the complexity of DNS have security implications? This is a

natural direction to explore. However, we note that, unlike for conventional DNS attacks,

the attacker must control the target’s zone files in order to leverage the complexity of DNS.

6.4 Summary

In this chapter, I investigated the computational complexity of DNS and shown its ability to

simulate a finite state machine and a pushdown system. While this is in the spirit of earlier

investigations into the complexity of protocols like BGP, I note, unlike BGP, DNS features

are available to applications. Thus besides the verification implications of computational

power, DNS computational power is a two-edged sword. It can allow useful systems (such as

organizational access control) and is potentially an enabler of new applications. On the other

hand, it can also provide potentially increased power to an adversary.
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CHAPTER 7

Conclusion

The Domain Name System or DNS is one of the pillars of the Internet. Today, every user

device requires a correct working DNS to translate a domain name to an IP address in order

to access various resources and services online. Despite its importance as the “phonebook”

of the Internet, DNS is fraught with configuration errors and implementation errors that

have far-reaching disruptive consequences, impacting millions of users. Even though the DNS

has been around for more than three decades, the impact of such errors was not felt until a

decade ago, when cloud networking grew exponentially. As more and more services moved

online, even a tiny error in DNS had a huge blast radius, as is evident from past DNS issues

in the decade that have rendered popular services such as Slack [Raf21], Salesforce [Spe21],

GitHub [Fry14], HBO [Yor15], LinkedIn [Zel13], and Azure [Tun19] inaccessible for extended

periods.

A simple DNS misconfiguration was the reason behind one of Microsoft’s worst outages,

which affected many of the Azure services [Tun19]. This outage was what first piqued my

interest in DNS, and was the motivation behind my thesis. After this incident, I started

investigating state-of-the-art DNS management techniques during an internship at Microsoft

research. I realized DNS was managed the same way the routing layer was managed a decade

ago, using live testing and monitoring approaches. I decided to apply formal methods to DNS.

I was inspired by the fact that formal methods have been widely successful in handling the

complexity and the scale of the routing layer of modern networks, while also providing strong
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proactive guarantees. This dissertation presents my contribution in making DNS robust with

the help of formal methods.

Unfortunately, treating DNS as a black box and applying classical formal techniques does

not scale well. Instead, I needed to develop new techniques that combined the traditional

formal methods ideas with DNS-specific insights, such as the hierarchical structure of domain

names. To develop such techniques, I had to understand DNS deeply, poring over DNS RFCs,

only to realize what a daunting task it was. While the RFCs are in an easily readable English

format, they were, at the same time, ambiguous and confusing. I also noticed that DNS

semantics are relatively poorly understood compared to other routing layer semantics. I often

had to test my understanding of the semantics by interpreting the responses from Bind and

PowerDns for small hand-crafted test zone files and queries.

This led me to build a formal model of DNS authoritative and recursive semantics using

a mathematical formalization. My goal in doing so was to remove the ambiguity of the

specifications, and to serve as the foundation for developing tools using formal methods.

Given that DNS has many RFCs, I prioritized developing the model for the record types

most frequently used. The developed formal model is in Chapter 3. I believe my formal

model of DNS can serve as the basis of future work in this area. Researchers can add other

record types and RFCs incrementally to my formal model.

In Chapter 4, I presented SCALE and Ferret, the first techniques for automatically

finding RFC compliance errors in DNS nameserver implementations. A unique feature of the

SCALE approach is the joint generation of zone files and queries to produce high-coverage

behavioral tests. The key insight underlying SCALE is to create an executable version of the

formal model developed earlier and then symbolically execute it to generate wide variety of

tests that can be used to test any DNS implementation. Intuitively, tests that cover a wide

variety of behaviors in the executable model will also cover a wide variety of behaviors in DNS

nameservers since they have the same goal, namely to implement the RFCs. I solved many
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technical challenges to make SCALE practicable for DNS as Ferret, which are detailed in

the chapter.

Using Ferret I tested 8 popular open-source DNS implementations and Amazon Route

53 DNS implementation. Ferret uses a novel hybrid fingerprinting approach for bug

deduplication that takes advantage of my formal model to help triage bugs. With the

Ferret tests, I discovered 30 new unique bugs and no false positives, including 3 previously

unknown critical security vulnerabilities. One of these was a new vulnerability in Bind that

attackers could remotely exploit to crash DNS resolvers and nameservers. Bind released a

patch and a high-severity CVE-2021-25215 as a result.

Chapter 5 described GRoot, the first verification tool for DNS configurations. Using

the formal model of the DNS, I described and proved the correctness of a fast algorithm

that generates equivalence classes of DNS queries. These equivalence classes enable GRoot

to efficiently and exhaustively check the correctness of DNS zone files. The key insight in

GRoot is to generate an exhaustive set of equivalence classes of DNS queries by leveraging

the zone files and the hierarchical tree structure of domain names. I applied GRoot to the

configuration files obtained from a large campus network which has over a hundred thousand

records, and it revealed 109 new bugs and completed in under 10 seconds. When applied to

internal zone files consisting of over 3.5 million records from a large infrastructure service

provider, GRoot revealed around 160k issues of blackholing, which initiated a cleanup of

the zone files.

As the final contribution of this thesis, I presented a theoretical analysis of the complexity

of the DNS in Chapter 6. After Ferret and GRoot, I realized DNS was no longer the

simple protocol that we are taught in introductory network classes, but instead is rich and

complex. I wanted to know what classes of computational problems DNS can solve to help

understand the theoretical limits of DNS configuration verification time complexity. I showed

that DNS has the power to express regular languages and pushdown systems. Consequently,

the verification time of DNS configuration is likely to be cubic in the number of records in
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the worst case. I strongly believe DNS is not Turing-complete; I am currently working on a

proof to show that DNS and PDS are, in fact, equivalent and hence have the same power

(Section 7.1.1).

7.1 Future Work and Open Problems

The work in this dissertation made progress towards making DNS robust by providing

techniques to address nameserver implementation errors and DNS configuration errors.

However, many challenges remain in DNS and beyond DNS in other parts of the cloud

networking stack.

7.1.1 Equivalence of DNS and PDS

In Section 6.2, we have seen how to encode a pushdown system in the DNS with an example.

In this ongoing work, I hope to how to reduce DNS to PDS and hence, formally prove their

equivalence. In other words, for every step in DNS, there is an equivalent step in PDS and

vice-versa. The intuition behind the equivalence is shown in Figure 7.1. Both PDS and

DNS are term rewriting systems [DJ90] where the only possible rewrite is a prefix rewrite.

The prefix rewriting occurs through rules in a PDS where only the top element of the stack

can be modified and using the DNAME record type in the DNS. The nondeterminism in PDS

i.e., presence of more than one rule for the same configuration, is simulated by nameserver

delegation in DNS.

The equivalence of DNS and PDS has interesting consequences for zone file verification.

If we can reduce a DNS configuration to a PDS, then we can leverage existing work on

model checking of pushdown systems for verifying DNS configurations (zone files) in an

acceptable time even in the presence of arbitrary DNAME records. We have seen how the zone

file verification time of GRoot can blow up quickly in the presence of multiple interacting

DNAME records in Section 6.3. A possible disadvantage of using the PDS approach could be
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Pushdown System Domain Name System

Prefix Rewriting
r = ⟨1, a⟩ ↪→ ⟨2, bd⟩

c0 = ⟨1, ac⟩

⟨1, ac⟩ r−−−→ ⟨2, bdc⟩

r′ = ⟨a.1., DNAME, 50, d.b.2.⟩
q = ⟨c.a.1., TXT⟩

⟨c.a.1., TXT⟩ r′−−−→ ⟨c.d.b.2., TXT⟩

Nondeterminism in PDS is simulated
by delegation in DNS

Figure 7.1: Equivalence of PDS and DNS.

that one may not be able to check for all the properties that GRoot can check. It might be

the case that we can use GRoot in the absence of DNAME loops and use the PDS approach

when there are loops, so as to have the best of both worlds.

7.1.2 Resolver Testing

The DNS can be considered as consisting of three components - zone files, nameservers and

resolvers. This thesis focused on the correctness of the first two components. Compared to

the authoritative side of DNS, resolvers have relatively simple control logic. The errors in

the resolver side of DNS are mostly not functional (RFC compliance) in nature but rather

involve performance issues. These include for example, how the implementation handles the

memory stack, how it protects from DDoS attacks, how it avoids leaking resources, and how

it performs under network constraints [ABS20]. These are harder to quantify and normalize

across implementations to decide correct behavior. The test setup for a resolver would also

be more complex than nameservers as a test may need to initialize the cache to a required

state before sending the test query. It may be interesting in the future to explore how to
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extend Ferret to generate such tests for resolvers as well as for nameservers as was done in

this thesis.

7.1.3 Extending SCALE for Testing Correctness of Other Protocols

SCALE is a general technique that can broadly be applied beyond DNS to other networking

protocols, especially to protocols that employ configurations such as BGP. One of the

advantages of SCALE is that it is extensible - one can start with a small base model and

incrementally add new logic or branches to expand the RFCs covered. The following are the

two main challenges in expanding SCALE to other protocols:

• DNS nameservers are stateless, but DNS resolvers, ICMP [Pos81], and BGP [RHL06]

protocols are stateful, requiring us to handle more than configurations. For example, in

BGP, the response to a route announcement depends not only on the configuration file

but also on what previous route announcements were received.

• SCALE is a powerful approach but requires manual effort to build the formal model,

however small that is.

I believe the small-scope property of networking protocols will help deal with the stateful-

ness challenge. We will need to model caches and routing tables and generate the sequence

of inputs required to pre-configure them before sending the test query or packet. However,

the sequence of inputs will likely be small enough for SMT solvers to generate tests in a

reasonable time while covering a wide variety of behaviors. For testing BGP implementations,

we are using the insight that a BGP implementation compares the input announcement to

only the best announcement it has. Therefore only a sequence of two route announcements

suffices to test the route priority code of the implementations. We could characterize the

protocols by the maximum number of messages needed to prepare any state. For example,

for DNS nameservers, this metric is 0 (since nameservers are stateless); on the other hand,

for BGP route priority, this metric is 1 (modulo some corner cases); for TCP, this metric is
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likely to be larger. In general, doing a complete characterization is hard. However, one could

potentially do some analysis on a protocol model to automatically discover “shortcuts” to

drive protocols to desired states to test various combinations of inputs and states.

Finally, recent papers automatically learn protocol models from implementations [FBD21]

or RFCs using NLP techniques [YLY21]. In particular, SAGE [YLY21] introduced semi-

automated protocol processing using domain-specific extensions to semantic parsing to convert

ICMP RFC 792 [Pos81] into executable code prototypes. Arguably, the Zen model we have

used for DNS is also an executable prototype. Thus in principle we should be able to leverage

the SAGE work for SCALE by changing the backend from C++ to Zen. This is a promising

step, but it still has a long way for other complex protocols. Nevertheless, it can help. One

could potentially adopt these techniques (like leveraging the intermediate logical form of

SAGE) in the future to reduce the burden of producing the formal model for SCALE.
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APPENDIX A

Appendix

Here I give full proofs of soundness, completeness and efficiency of GRoot’s equivalence

class generation algorithm. First I introduce several helpful definitions. The first definition

lets us more easily extract information from DNS answers:

Definition A.1 (DNS answer extraction). Given answer a, we write records(a) to refer the

records in a, tag(a) for the record tag, and query(a) for the rewritten query (undefined if

there is none). For example, if a = ⟨AnsQ, ⟨R, q⟩⟩, then records(a) = R, tag(a) = AnsQ,

and query(a) = q. We lift each of these definitions to sets of answers, e.g., query(A) =

{q | a ∈ A, q = query(a) is defined}

Definition A.2 (Real record extraction). Given a set of resource records R, we extract

those that are not synthesized with real(R) = {r ∈ R | synth(r) = F}. This definition of

real is lifted to DNS answers as: real(a) = ⟨tag(a), real(records(a))⟩ and to sets of answers

pointwise: real(A) = {real(a), a ∈ A}.

Definition A.3 (Equivalence modulo synthesis). Given answer sets A1 and A2, we say the

sets are equivalence modulo synthesis, written A1 ≈ A2, if real(A1) = real(A2).

A.1 Equivalence Class Generation Algorithm Correctness

Theorem A.1 (EC generation sound). For a given configuration C = ⟨S,Θ,Γ,Ω⟩, if two

queries q1 and q2 are in the same EC computed by the algorithm, then q1 ∼C q2.
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Proof. We assume that q1 and q2 are computed to be in the same EC, and we introduce

variables ai for a given server s:

a1 = ServerLookup(Γ(s), q1)

a2 = ServerLookup(Γ(s), q2)

Given these assumptions, we must prove the following three conditions:

(1) N (Γ(s), q1) = N (Γ(s), q2)

(2) a1 ≈ a2

(3) q′1 ∈ query(a1), q
′
2 ∈ query(a2) =⇒ q′1 ∼C q′2

Assume an arbitrary label graph generated by the EC generation algorithm. Each EC

generated by the algorithm corresponds to a path through the label graph. Assume an

arbitrary EC corresponding to path ρ through the label graph, where q1, q2 ∈ EC(ρ). We

note that q1 and q2 can only differ if the final label in the path is α.

Condition (N (Γ(s), q1) = N (Γ(s), q2)):

From the definition of N , we must show:

maxdn{z ∈ Γ(s) | dn(z) ≤ dn(q1)} = maxdn{z ∈ Γ(s) | dn(z) ≤ dn(q2)}

The sets {z ∈ Γ(s) | dn(z) ≤ dn(q1)} and {z ∈ Γ(s) | dn(z) ≤ dn(q2)} select all zones where

q1 and q2 are prefixes of the domain name. By virtue of q1 and q2 sharing the same path ρ,

we now prove that these two sets are equivalent:

Case 1 (ρ does not end with α). In this case, q1 and q2 are the same query, and the equality

is trivial.
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Case 2 (ρ ends with α). In this case there are two possibilities. The first is that qi =

. . . ◦ lk+1︸ ︷︷ ︸
α

◦ lk ◦ lk−1 ◦ . . . ◦ ϵ and dn(z) = lj ◦ . . . ◦ ϵ for j ≤ k. In this case, we know that

dn(z) ≤ q1 ⇔ dn(z) ≤ q2 since q1 and q2 have the same shared prefix. The other case is

where j > k. In this case, we know that dn(z) is given by the SOA record in the zone file,

which means that dn(z) will appear in the label tree. However, if this were the case, then we

know that α is restricted such that α[0] = lk+1 is not equal to label k + 1 in dn(z). As such,

dn(z) ̸≤ q1 and dn(z) ̸≤ q2.

Condition (a1 ≈ a2):

By the definition of ServerLookup, and the fact that N (Γ(s), q1) = N (Γ(s), q2) from

before, there are now two cases. If N (Γ(s), q1) = ∅, then a1 = a2 = ⟨Refused, ∅⟩. Otherwise,

we have N (Γ(s), q1) = {z} for some z, and therefore:

a1 = ZoneLookup(z, q1)

a2 = ZoneLookup(z, q2)

Expanding the definition of ZoneLookup, we get:

a1 = RRLookup({r ∈ max<q1,z
z}, q1, z)

a2 = RRLookup({r ∈ max<q2,z
z}, q2, z)

The inner set {r ∈ max<q1,z
z} selects the resource records that are a closest match to the

query q1 and similarly for q2. These two sets must be equal for the same reasons as in the

proof of the first condition. In other words, if two records can distinguish between q1 and q2

in α, then α would have excluded the domains of those records. Specifically, it must be that

Rank(r, q1, z) = Rank(r, q1, z). This can be shown by showing that each component of the

Rank functions are equivalent.
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The first components Match(r, q1) = Match(r, q2) must be true since dn(r) ≤
dn(q1) ⇐⇒ dn(r) ≤ dn(q2) since dn(r) cannot equal dn(q1) or dn(q2) (or else they would

be in different ECs). Hence dn(r) can only be a prefix of both dn(q1) and dn(q2). Similarly,

if dn(qi) ∈∗ dn(r), then |dn(r)| ≤ |dn(qi)|. Again assume qi = . . . ◦ lk+1︸ ︷︷ ︸
α

◦ lk ◦ lk−1 ◦ . . . ◦ ϵ and

dn(r) = lj ◦ . . . ◦ ϵ. If j ≤ k, then dn(q1) ∈∗ dn(r) ⇔ dn(q2) ∈∗ dn(r). If j > k + 1, then

dn(r) would be in the label graph and α would exclude lk+1 (α[0] ̸= lk+1). If j = k + 1, then

it must be that lj = ∗, in which case both qi match the wildcard for dn(r).

The second and fourth components of Rank do not depend on the query value and are

thus the same. The third components must also be equal since dn(q1) and dn(q2) share the

same prefix (except their last label) and dn(r) cannot share a label in this last position with

either query since this would have caused q1 and q2 to be separated into different ECs.

Note that if a record r is an exact match (dn(r) = dn(qi)), then it must be that q1 = q2, since

otherwise the labels of r would be in the label graph, and thus q1 would not be placed in the

same EC as q2.

Continuing, we then have a set R such that:

a1 = RRLookup(R, q1, z)

a2 = RRLookup(R, q2, z)

We continue by case analysis on the execution of RRLookup for q1.

Case (dn(R) = dn(q1)). This is an exact match. As just stated, it must then be that q1 = q2.

and so the equality trivially holds.
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Case (dn(q1) ∈∗ dn(R)). In this case, the matching record(s) are wildcard records. From

before, we know that dn(q2) ∈∗ dn(R). We therefore get the following:

a1 = WildcardMatch(R, q1, {ty(r) | r ∈ R})
a2 = WildcardMatch(R, q2, {ty(r) | r ∈ R})

There are now three cases for how WildcardMatch can evaluate. We know that q1 and q2

have the same type by how the algorithm generates ECs. If the types are equal:

a1 = ⟨Ans,Syn(T (R, ty(q1)), dn(q1))⟩
a2 = ⟨Ans,Syn(T (R, ty(q2)), dn(q2))⟩

Expanding the definition of Syn:

a1 = ⟨Ans, T (R, ty(q1)) ∪ {⟨d, t, τ, a, T ⟩ | ∃ d′, ⟨d′, t, τ, a, F ⟩ ∈ T (R, ty(q1))}⟩
a2 = ⟨Ans, T (R, ty(q2)) ∪ {⟨d, t, τ, a, T ⟩ | ∃ d′, ⟨d′, t, τ, a, F ⟩ ∈ T (R, ty(q2))}⟩

Since we must show that a1 ≈ a2, we compute:

real(a1)

= ⟨Ans, real(T (R, ty(q1)) ∪ {⟨q1, t, τ, a, T ⟩ | ∃ d′, ⟨d′, t, τ, a, F ⟩ ∈ T (R, ty(q1)))⟩
= ⟨Ans, real(T (R, ty(q1)))⟩
= ⟨Ans, real(T (R, ty(q2)))⟩
= real(a2)
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In the second case, we have ty(q1) ̸∈ T, CNAME ∈ T,R = {r}. Again we assume the types are

equal, so we have ty(q1) ̸∈ T and ty(q1) = ty(q2) and it follows that ty(q2) ̸∈ T . Therefore, q2

will evaluate to the same case, giving us:

a1 = ⟨AnsQ,Syn(R, dn(q1)), ⟨ans(q1), ty(q1)⟩⟩
a2 = ⟨AnsQ,Syn(R, dn(q2)), ⟨ans(q2), ty(q2)⟩⟩

As before, we compute real:

real(a1) = ⟨AnsQ, real(Syn(R, dn(q1)))⟩
real(a2) = ⟨AnsQ, real(Syn(R, dn(q2)))⟩

And then
real(a1) = ⟨AnsQ, real(R)⟩
real(a2) = ⟨AnsQ, real(R)⟩

Which gives the desired result.

In the final case, for WildcardMatch we trivially have a1 = ⟨Ans, ∅⟩ = a2.

Case (dn(R) < dn(q1), DNAME ∈ T ). In this case there is a single DNAME record (R = {r}).
Given that q1 and q2 share the same prefix, it must be the case that dn(R) < dn(q2) Therefore

we get the same case for q2. We compute:

a1 = Rewrite({r}, q1)
a2 = Rewrite({r}, q2)

Expanding the definition of Rewrite:

a1 = ⟨AnsQ,DProc(T ({r}, DNAME), q1)⟩
a2 = ⟨AnsQ,DProc(T ({r}, DNAME), q2)⟩
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Unfolding the definition of DProc, we get:

a1 = ⟨AnsQ, ⟨{r} ∪ {⟨dn(q1), CNAME, ttl(r), dn(q1)[dn(r) 7→ ans(r)], T ⟩},
⟨dn(q1)[dn(r) 7→ ans(r)], ty(q1)⟩⟩⟩

a2 = ⟨AnsQ, ⟨{r} ∪ {⟨dn(q2), CNAME, ttl(r), dn(q2)[dn(r) 7→ ans(r)], T ⟩},
⟨dn(q2)[dn(r) 7→ ans(r)], ty(q2)⟩⟩⟩

Applying the definition of real, we drop the synthesized records:

real(a1) = ⟨AnsQ, real({r})⟩ = real(a2)

Case (dn(R) < dn(q1), DNAME ̸∈ T, NS ∈ T, SOA ̸∈ T ). As in the previous case, we know that

dn(R) < dn(q2). It follows that q2 will also match this case. We compute:

a1 = Delegation(R, z) = a2

Case (otherwise). This case is trivial, since q2 must also fall into this case since it matched

the same conditions for all other cases. As such, then we get a1 = ⟨Ans, ∅⟩ = a2.

Condition (q′1 ∈ query(a1), q
′
2 ∈ query(a2) =⇒ q′1 ∼C q′2): The final condition we must

prove is for rewrites. There are two possible ways a rewrite can happen: a DNAME or CNAME

record. The proof follows the exact structure as in the previous condition, except we show

only these two cases since any other records with result in query(ai) = ∅.

Case (dn(R) = dn(q1),Authoritative(T ), ty(q1) ̸∈ T, CNAME ∈ T,R = {r}). This is the

ExactMatch case for a CNAME record. As before, we observe that q1 = q2, so the property

is trivially satisfied.
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Case (dn(q1) ∈∗ dn(R), ty(q1) ̸∈ T, CNAME ∈ T,R = {r}). This is the WildcardMatch

case for a CNAME record. As before, we observe that dn(q2) ∈∗ dn(R), so q2 will execute in

the same case. We have query(a1) = {⟨ans(r), ty(q1)⟩} = {⟨ans(r), ty(q2)⟩} = query(a2), so

the property holds since CNAME simply rewrites to a fixed new query.

Case (dn(R) < dn(q1), DNAME ∈ T ). This is the Rewrite case for a DNAME record. As before,

we observe that dn(R) < dn(q2), so q2 will execute in the same case. Unfolding the definition

of DProc, we have:

query(a1) = {⟨dn(q1)[dn(r) 7→ ans(r)], ty(q1)⟩}
query(a2) = {⟨dn(q2)[dn(r) 7→ ans(r)], ty(q2)⟩}

For this DNAME case, we know that dn(qi) (represented by path ρ) are prefixes of dn(r). Suppose

that q1 = . . . ◦ lk︸ ︷︷ ︸
α

◦ lk−1 ◦ . . . ◦ ϵ and q2 = . . . ◦ l′k︸ ︷︷ ︸
α

◦ lk−1 ◦ . . . ◦ ϵ, and that dn(r) = l′′j ◦ l′′j−1 ◦ . . . ◦ ϵ

where j < k and li = l′′i . Further, suppose that ans(r) is given by the target domain name ρ′

The rewritten queries will be q′1 = . . . ◦ lk ◦ lk−1 ◦ . . . ◦ ρ′ and q′2 = . . . ◦ l′k ◦ lk−1 ◦ . . . ◦ ρ′. Since

we always add the target of a DNAME record to the label graph, path ρ′ will be a path that

exists in the label graph. Moreover, there will be a dashed edge from the node representing

path dn(r) to a node corresponding to ρ′. We will show that q′1 and q′2 now belong to the

same label graph path. Since q1 and q2 could only have been in the same EC if ρ ended in

α in the label graph, and since by construction this α excluded all possible subdomains for

extensions of ρ′ after the rewrite, we know that the path matching q′1 and q′2 must end in α.

Since they match the same path, we conclude that q′1 ∼C q′2.

A.2 Soundness

Theorem A.2 (Soundness). For all C, q1, q2, and k, if q1 ∼C q2, then Resolve(q1, C, k) ≈
Resolve(q2, C, k).
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Proof. From Resolve, we must show:

⋃
s∈Θ

Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, k) ≈
⋃
s∈Θ

Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, k)

In particular, we prove a stronger inductive invariant:

∀C, q1, q2, s, i. q1 ∼C q2 =⇒ Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) ≈ Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)

which then implies this equality. The proof proceeds by induction on the resolution step i.

Base case (i = 0) trivial since we have

real(Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, 0)) = real({ServFail, ∅}) = {ServFail, ∅}
real(Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, 0)) = real({ServFail, ∅}) = {ServFail, ∅}

Inductive case (i) We must prove that

Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) ≈ Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)

First, we observe that if s = ⊥, then both the left and right hand sides evaluate to

{ServFail, ∅} as in the base case.

There are now three cases for how Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) may evaluate. We consider

each in turn:

Case 1 (ServerLookup(Γ(s), q1) = ⟨AnsQ, ⟨R, q′1⟩⟩).

From the assumption of q1 ∼C q2 we know that

ServerLookup(Γ(s), q1) ≈ ServerLookup(Γ(s), q2)
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Substituting on the left, we get:

ServerLookup(Γ(s), q2) ≈ ⟨AnsQ, ⟨R, q′1⟩⟩

Expanding the definition of ≈, we get

real(ServerLookup(Γ(s), q2)) = real(⟨AnsQ, ⟨R, q′1⟩⟩)

Simplifying on the right:

real(ServerLookup(Γ(s), q2)) = ⟨AnsQ, real(R)⟩

This equality can only hold if: ServerLookup(Γ(s), q2) = ⟨AnsQ, ⟨R′, q′2⟩⟩ and also

real(R′) = real(R). We note that from the assumption of q1 ∼C q2, we know that q′1 ∼C q′2.

This also implies that N (Γ(s), q′1) = N (Γ(s), q′1)

There are now two cases. In the first case we have N (Γ(s), q′1) = ∅, which implies N (Γ(s), q′2) =

∅ from the assumption C , and in the second case we have N (Γ(s), q′1) ̸= ∅ which implies

N (Γ(s), q′2) ̸= ∅. Both cases are proved the same way, so we show one (N (Γ(s), q′1) = ∅).

Since both cases will resolve using the AnsQ case, we can compute

Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) = Resolve(q′1, ⟨S,Θ,Γ,Ω⟩, i− 1)

Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i) = Resolve(q′2, ⟨S,Θ,Γ,Ω⟩, i− 1)

therefore, we have:

real(Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i)) = real(Resolve(q′1, ⟨S,Θ,Γ,Ω⟩, i− 1))

real(Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)) = real(Resolve(q′2, ⟨S,Θ,Γ,Ω⟩, i− 1))
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From the inductive hypothesis, and the fact that q′1 ∼C q′2, then we can conclude:

Resolve(q′1, ⟨S,Θ,Γ,Ω⟩, i− 1) ≈ Resolve(q′1, ⟨S,Θ,Γ,Ω⟩, i− 1)

and we can finally prove the desired result:

Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) ≈ Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)

Case 2 (ServerLookup(Γ(s), q1) = ⟨Ref, R⟩)

From the assumption of q1 ∼C q2 we know that

ServerLookup(Γ(s), q1) ≈ ServerLookup(Γ(s), q2)

Substituting on the left, we get:

ServerLookup(Γ(s), q2) ≈ ⟨Ref, R⟩

Expanding the definition of ≈, we get

real(ServerLookup(Γ(s), q2)) = real(⟨Ref, R⟩)

Simplifying on the right:

real(ServerLookup(Γ(s), q2)) = ⟨Ref, real(R)⟩

This equality can only hold if: ServerLookup(Γ(s), q2) = ⟨Ref, R′⟩ and also real(R′) =

real(R).
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Since both cases will resolve using the Ref case, we can compute therefore, we have:

real(Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i)) = real(
⋃

r∈T (real(R),NS) Resolve(Ω(ans(r)), q1, ⟨S,Θ,Γ,Ω⟩, i− 1))

real(Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)) = real(
⋃

r∈T (real(R′),NS) Resolve(Ω(ans(r)), q2, ⟨S,Θ,Γ,Ω⟩, i− 1))

from the definition of real, we can distribute over set union:

real(Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i)) = ⋃
r∈T (real(R),NS) real(Resolve(Ω(ans(r)), q1, ⟨S,Θ,Γ,Ω⟩, i− 1))

real(Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)) = ⋃
r∈T (real(R′),NS) real(Resolve(Ω(ans(r)), q2, ⟨S,Θ,Γ,Ω⟩, i− 1)))

From the inductive hypothesis, and the fact that q1 ∼C q2, then we can conclude that for

each r ∈ real(R) = real(R′):

Resolve(Ω(ans(r)), q1, ⟨S,Θ,Γ,Ω⟩, i− 1) ≈ Resolve(Ω(ans(r)), q2, ⟨S,Θ,Γ,Ω⟩, i− 1)

Since the components are pointwise equal, the set unions are also equal, so we obtain the

desired result:

Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) ≈ Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)

Case 3 (otherwise)

The final case is immediate from the assumption of q1 ∼C q2. In particular, this means:

{ServerLookup(Γ(s), q1)} ≈ {ServerLookup(Γ(s), q2)}

and since real is applied pointwise over sets:

ServerLookup(Γ(s), q1) ≈ ServerLookup(Γ(s), q2)

and by the definition of Resolve:

Resolve(s, q1, ⟨S,Θ,Γ,Ω⟩, i) ≈ Resolve(s, q2, ⟨S,Θ,Γ,Ω⟩, i)
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A.3 Completeness

Theorem A.3 (Completeness). For a configuration C, each query q belongs to at least one

computed equivalence class.

Proof. The proof is straightforward: Assume we are given an arbitrary query q. We must

prove that q belongs to some equivalence class. In particular, we simply pick the path through

the label graph that shares the longest matching prefix with dn(q). If the longest matching

path is an exact match, then we are done since we generate an EC for each type for that

exact domain name dn(q). If however, there is not an exact match, the we select that last

label in common with dn(q), which will have an α child. This child, by construction, will

match any domain name not already matched by a sibling or a child of some rewrite along

the same path.

A.4 Efficiency

Theorem A.4 (Linear time). In the absence of DNAME records, for a collection of zone files

with n resource records, my algorithm computes O(n) equivalence classes in O(n) time.

Proof. Without DNAME records, the label graph is a tree, and hence the number of paths in

the tree is equal to the number of nodes in the tree. The number of nodes in the tree is

at most 127 * n, since each record can have at most 127 labels in it. Since we generate,

at most, |T | (constant number) equivalence classes for each path, there are at most O(n)

ECs. To build the label graph, we add each of the n records to the tree. Since each domain

name in a record can have at most 127 labels, adding the domain name to the tree involves

walking through at most 127 levels of the tree to find where to add the new labels for the
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domain name. At each level, we find if there is a matching label by using a hash table with

amortized constant time lookup. So each insertion takes constant bounded time, and there

are n insertions.
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