ConcorbD: Learning Network Configuration Contracts

Ryan Beckett Francis Y. Yan Raghunadha Reddy Pocha
Microsoft Research UIUC Microsoft
Vineesh V. Raj Ayyub Shaik Siva Kesava Reddy Kakarla
Microsoft Microsoft Microsoft Research

Abstract

Misconfiguration is frequently cited as a leading cause of ser-
vice disruptions and outages. To prevent misconfiguration,
we introduce network contracts—lightweight configuration
checks that run efficiently, localize errors to specific lines,
and require no heavyweight modeling of network protocols.
We develop a tool CONCORD to learn contracts automati-
cally from example network configurations. By checking
these learned contracts against new or changed configura-
tions, CoNCORD finds likely configuration bugs before they
can impact the network. Key to our approach is a scalable
algorithm for learning “relational” contracts that capture
complex dependencies between configuration settings. We
deployed CoNcCORD as part of a cloud-based configuration
management service and evaluated its scalability, coverage,
precision, and utility on two large real-world configuration
datasets.

CCS Concepts: + Networks — Network reliability; Net-
work manageability; - Computing methodologies —
Rule learning; - Information systems — Association
rules.
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1 Introduction

Configuration plays a crucial role in managing the behavior,
performance, and security of networks [15, 17, 22, 31, 33, 52].
Configuration policies are employed extensively across the
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network stack, including in mobile base stations [5, 36] that
transform radio signals into packets, routing protocols that
guide packet transmission across the Internet [20, 52], and
application-layer network orchestration frameworks [22, 31]
that dynamically adapt resources to meet traffic demand.

However, configuring networks is fraught with challenges
as configuration-related outages remain a major pain point
for network operators, service providers, and enterprises
alike [19, 47, 49, 51, 57, 60, 65]. Misconfigurations can impact
millions of users and beget significant financial losses for
organizations. Recently, major cloud providers [47, 57, 60] as
well as airline, financial, e-commerce, and social media com-
panies [49, 65] have all suffered from configuration-related
network outages, and misconfigurations are a leading causes
of outages in production networks [14, 26, 42, 48, 50, 61, 64].

One approach to solve the configuration problem is to val-
idate their correctness proactively with formal verification.
While formal verification provides strong guarantees of cor-
rectness and has found success in specific contexts such as
the packet forwarding [6, 7, 30, 37-39, 44, 46, 63, 67] and for
specific protocols [4, 8-10, 23, 25, 34, 55, 56, 59], many real
networks utilize dozens of complex protocols with thousands
of diverse configuration settings, the majority of which lack
formal models and efficient verification tooling. Moreover, a
complete set of network invariants is often unknown [35].

Conversely, although misconfiguration-related outages
often manifest as violations of critical end-to-end invariants
(such as loss of connectivity between an end user and a ser-
vice), the root cause of many such outages is often extremely
simple in hindsight [35, 36, 42]. For instance, an operator
might erroneously set a timer value or disable an impor-
tant switch interface [36], ultimately leading to a cascading
network-wide failure. The remarkably simple nature of many
such errors suggests that even lightweight validation could
identify many misconfigurations.

Based on this observation, in this paper we propose a
new approach to proactive configuration validation based on
configuration contracts. Contracts are lightweight syntactic
rules that easily checked against the configuration text of
each device locally. For instance, a contract might state that
if a line in the configuration sets the IP address of a loop-
back interface, then there must be a corresponding line that
configures a static route for that IP address (§2). Contracts
are typically network-specific as they capture key invariants
implicit in configurations, which differ network-by-network.
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Contracts are effective at identifying many common mis-
configurations, but forgo strong guarantees of correctness in
exchange for several practical benefits. They are (1) scalable
to large networks with thousands of devices due to being
checked locally within each configuration file, (2) actionable
in that they localize errors to specific configuration lines, (3)
protocol-agnostic in that they do not require deep semantic
modeling of specific network protocols, and (4) learnable
automatically from operational configurations.

We present the design and implementation of CONCORD,
a tool for learning contracts from and validating contracts
against network configurations. In its learning mode, Con-
coRD analyzes the text of network configurations and infers
a set of statistically likely contracts from their use. In its
checking mode, Concorbp efficiently evaluates contracts (ei-
ther learned or manually specified) against new or modified
configurations to identify and localize potential bugs.

Some prior works learn “rules” for some simple configura-
tion formats [41, 45, 53, 54, 66] modeled as a finite set of keys
and values (e.g., the key max_connections might have value
64 for MySQL [53]). For instance, Minerals [41] analyzes
BGP configurations to extract some features into this format
(e.g., key bgp_session_is_ebgp with value 1).

These simple models both (1) require extensive configu-
ration preprocessing to extract features and (2) are not well
suited to learn complex patterns typically observed in net-
work configurations, such as those involving dependencies
between repeated elements (e.g., multiple interfaces), hier-
archy (e.g., a tag is part of a VLAN’s configuration), and
complex data structures (e.g., a prefix filter lists).

To learn a richer set of contracts from network config-
urations, CONCORD takes a different approach. It requires
no preprocessing and instead applies directly to configura-
tion source text by modeling configurations more generally
as a list of patterns (one per line) with data arguments. It
then learns a simple yet expressive set of contracts over the
resulting list of possibly repeated patterns of the form:

for every linel matching patternl, there exists a line2
matching pattern2 with values related by formula F.

Relational contracts establish insightful connections between
collections of configuration elements such as “each BGP
session is configured over a valid interface.” To learn such
rules Concorp adapts the framework of association rule
learning [1, 28, 53] to identify statistically likely contracts.
Existing rule learning algorithms [1, 28] enumerate all
possible candidate contracts. For CONCORD’s new model,
however, this approach is fundamentally unscalable, as (1)
the number of candidate contracts scales super-linearly with
the number configuration lines (millions for large networks),
and (2) it can generate a commensurately large number of
contracts. To address these issues, we introduce relation-
finding data structures for common network data types that
asymptotically reduce the number of candidate contracts to
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evaluate. We also implement a novel contract minimization
algorithm using graph transitive reduction [2].

We deployed CoNcoRD as part of the Continuous Integra-
tion Continuous Delivery (CI/CD) pipeline of a cloud-based
configuration management service to validate configuration
changes. We then evaluated CONCORD against two large real-
word datasets: mobile edge datacenters and a wide-area net-
work totaling several million lines of configuration. For each
dataset, we assessed CONCORD’s scalability, its configuration
coverage, its learning precision, and its practical utility.

Contributions. We make the following contributions:

o We motivate the use of lightweight contracts to proac-
tively validate network configurations. We demonstrate
that contracts are scalable, actionable, protocol-agnostic,
and learnable from existing configurations.

o We describe the design, implementation, and production
deployment of CONCORD, an efficient tool for both learning
and enforcing network configuration contracts.

o We demonstrate that CoNCORD executes quickly on con-
figurations with millions of lines, exhibits a linear scaling
trend, learns contracts that cover the majority of the con-
figuration lines, achieves a precision of over 90% for most
contract categories, and catches real misconfigurations.

Ethics. This work does not raise any ethical issues.

2 Overview of CONCORD

In this section, we present an overview of configuration
contracts, discuss the challenges with learning configuration
contracts and provide an overview of CONCORD.

Figure 1 shows example Arista configurations for mobile
near edge datacenters. These datacenters consist of com-
mercially available off-the-shelf (COTS) servers, network
switches (configurations shown), and storage databases. The
correctness of the configurations is critical, as they control
routing between the user, mobile core network functions
(NFs), cloud management infrastructure, and the Internet.

The correct operation of these datacenters relies on the
switch configurations maintaining numerous contracts. For
instance, the line ip address 10.14.14.34 configures the
IP address for the Loopback0 interface, while another line
seq 10 permit 10.14.14.34/32 ensures the interface has
connectivity.! In another example, each port channel (e.g.,
interface Port-Channel110) uses BGP EVPN with a spe-
cific MAC address (e.g., 00:00:0c:d3:00:6e). While not re-
quired in general by the vendor (Arista), for the datacenter’s
design the port channel’s name must correspond with the
last segment of the MAC address in hexadecimal (i.e., 110 in
decimal is equal to 6e in hex) for correct operation.

Unfortunately, a complete set of contracts is typically un-
available, undocumented, or unknown. Even when operators
attempt to author contracts, doing so at scale for configura-
tions with tens of thousands of lines and maintaining those

1All configuration values have been anonymized for security reasons.
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hostname DEV1
!

interface LoopbackO

ip address 10.14.14.34 ®
!
interface Port-Channel 11 e
evpn ether—segment
route-target import 00:00:0c:d3:00: Ob

interface Port—-Channel 110 & <
evpn ether-segment I

route-target import 00:00:0c:d3:00: 6e
!

ip prefix-list loopback

EUROSYS ’26, April 27-30, 2026, Edinburgh, Scotland Uk

i forall 11 ~ interface Port-Channel[a:num] |

—— > exists 12 ~ route-target import [b:mac]

i equals(hex(1l1l.a), segment(12.b, 6))

i forall 11 ~ ip address [a:ip4]
——» exists 12 ~ seq [a:num] permit [b:pfx4]
contains(12.b, 11.a)

seq 10 permit 10.14.14.34/32¢

seq 20 permit 0.0.0.0/0
!

forall 11 ~ vlan [a:num]

maximum-paths 64 ecmp 64
vlan 251 e
rd 10.14.14.117: 10251 OJ

router bgp 65015 J

(a) Example configurations @
i forall 11 ~ interface Port—Channel[a:num] !

exists 12 ~ evpn ethernet-segment
equals(index(11) + 1, index(12))

(c) Ordering contracts

# exists 12 ~ rd [a:ip4]: [b:num]
endswith(str(12.b), str(li.a))

(d) Presence contracts

Figure 1. Example of Concorp. Simplified configuration snippet (a) and contracts learned using Concorp. Example contracts
relate values across configurations (), (2), (3) and define ordering (@) & presence ((5), (6), (7)) requirements. The syntax
1 ~ ip address [a:ip4] means that line 1 matches pattern ip address [a:ip4] where a is an IPv4 address. Relational
contracts state that for every line 11 matching some pattern, there exists a line 12 in the same configuration matching another
pattern such that their values are related in some way. For example, in (D) the port channel number converted to hexadecimal
(hex(11.a)) is equal to the last segment of the MAC address from another line (segment (12.b, 6)).

contracts as the network and configurations evolve is a her-
culean task. During our discussions with the maintainers of
the edge data center configurations, they stated that they
easily spent over 60% of their time trying to maintain such
a set of contracts. They also pointed out that they at least
know the current configurations are working as intended
since they are deployed and running in production without
issue, which motivates our problem:

Can we learn contracts directly from configurations?

Challenge 1: Complex configuration structure. While
there is some prior work on learning “rules” for simple con-
figuration formats, existing works do not learn the kinds of
complex relationships found in most network configurations.
Specifically, prior works model configurations as a set of
unique keys and their values (e.g., the key max_connections
might have value 64) [53, 54, 66]. While they can handle
some simple configuration formats (e.g., MySQL database),
they cannot analyze the complex structures and policies
frequently found in network configurations such as lists

(e.g., ip prefix-list loopback) or repetitive elements (e.g.,
Port-Channelll and Port-Channel110). For instance, they
cannot represent even simple contracts such as “every loop-
back interface has an IP address configured”

As a concrete example, consider contract (2) that CoNCORD
learned in Figure 1. The contract says that for each line 11 in
the configuration that matches pattern ip address [a:ip4],
there exists another line 12 in the configuration that matches
pattern seq [a:num] permit [b:pfx4], where the IPv4 prefix
in 12 (b) contains the IPv4 address from 11 (a). In essence,
this captures the dependency that every interface IP address
is permitted by some rule in the prefix list for security.

Challenge 2: Vendor-agnostic analysis. Recent works
Diffy [36] and SelfStarter [35] perform some structural analy-
sis of configurations to find bugs. However, they rely heavily
on domain-specific parsing and algorithms. Even just pars-
ing vendor-specific configurations into a suitable format is a
challenging task for these tools since configurations consist
of thousands of commands with specialized syntax, and are
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constantly changing with the release of new firmware, OS
versions, and configuration options.

When we tested Batfish [21], an open-source tool with
the most comprehensive configuration parsers available, on
the configurations in Figure 1, it only recognized 50% of the
lines. Any downstream configuration analysis is thus not
even possible for half of the configuration using these tools.

CoNCoRD instead treats configurations as unstructured
text and does not require vendor-specific parsers. However,
extracting structure from unstructured text is challenging.
Different hardware vendors embed crucial information in
ad hoc data formats and with implicit hierarchical structure.
For instance, the route distinguisher 10.14.14.117:10251 in
Figure 1 employs unconventional syntax and the loopback
prefix list ip prefix-list loopback defines a configuration
block that comprises multiple entries.

Challenge 3: False positives. Many relationships ex-
ist between values in different parts of the configuration,
such as the loopback address and prefix list described earlier.
Some of these relationships may be intentional, while others
might occur purely by coincidence. For instance, the line
seq 20 permit 0.0.0.0/0 from the example contains a de-
fault prefix that coincidentally contains the IP address of the
route distinguisher 10.14.14.117. However, this relation-
ship is neither meaningful nor predictive of bugs. Naively
learning such contracts leads to false positives.

Challenge 4: Learning contracts at scale. Finally, to-
day’s network configuration files are massive with thousands
or even tens of thousands of lines per device and hundreds to
thousands of devices. Learning meaningful contracts while
sifting through millions of lines of configuration presents a
significant challenge. Rule mining methods are based on the
concept of finding frequent item sets, which suffer from super-
linear time complexity, making their direct application to
large configurations infeasible. Moreover, these approaches
are “noisy”—simply enumerating all valid rules.

How CoNcorD works. CONCORD consists of two phases
as shown in Figure 2. In the first phase it learns a set of
contracts from training configurations as well as any other
metadata files (e.g., containing network or device state). It
treats all inputs as unstructured text and attempts to extract
likely contracts. In the second phase, it evaluates the con-
tracts against a set of test configurations to find violations.

CoNCcoRD’s Assumptions. CONCORD assumes most train-
ing configurations are correct and that contracts persist over
time. It tolerates some training configuration errors; if a ma-
jority of training examples share the same misconfiguration,
CoNCORD may learn an incorrect contract. However, valida-
tion against correctly configured instances typically surfaces
these as anomalies for operator review. When best practices
change or networks are redesigned, contracts can become
invalid and require relearning. Some coincidental patterns
are inevitable (we minimize them in §3); operators can read-
ily spot invalid contracts, and anomalous ones are flagged

Beckett et al.

=
93 =
Training Configs Metadata

Y ¢ @

v
\ @F oorddes]  (a :
'$ dhk;.—>

Contracts

Testing Configs Violations

Figure 2. CoNcORrRD workflow. concord learn (1) infers a
set of contracts from training configuration files and any
system metadata. concord check (2) applies the contracts to
test configurations and report violations.

pre-deployment for quick dismissal or update—far less work
than inspecting full configurations.

3 Contract Learning & Checking

To learn contracts effectively, CoONCORD applies context em-
bedding (§3.1) and data extraction (§3.2) phases to transform
configuration text into a sequence of typed “patterns” and
extracted data values. CoNCORD then employs a variation
of association rule learning [1] (§3.4, §3.5) to learn likely
contracts from their use. It learns contracts asymptotically
more efficiently through relation-aware search data struc-
tures (§3.5), reduces likely false positive contracts (§3.5), and
minimizes the set of learned contracts (§3.6). CONCORD incor-
porates external data sources (§3.7) into its analysis, checks
configurations efficiently (§3.8), and measures the coverage
of its contracts when applied to configurations (§3.9).

3.1 Context embedding

Learning contracts without prior knowledge of vendor-specific
syntax is challenging. Simply treating each line as an individ-
ual “unit” of text is ineffective for complex data formats. The
line ip address 10.14.14.34 from Figure 1 shares a connec-
tion with the ip prefix-list loopback line only because
the IP address is set in the context of interface Loopback0.
Similarly, many configuration formats like JSON and YAML
organize data hierarchically, and this structure is not appar-
ent at the line level.

To address this challenge, for each configuration, Con-
CORD first infers a data format category, such as JSON, YAML,
Indentation, Unknown, etc. It then performs a simple con-
text embedding pass to inject context into each line such
as the JSON path or indentation hierarchy. For JSON, this
involves including the “object keys” leading to the value and
for indentation-based formats such as from Figure 1 it in-
volves maintaining a stack of “parents” for each indentation
level. We show this transformation in Figure 3.

This approach is effective because, despite the existence of
thousands of distinct configuration dialects, the number of
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/interface Loopback[num]/ip address [a:ip4]

/!

/interface Port—Channel [a:num]

/interface Port-Channel [num]/evpn ether-segment

/!
/interface Port-Channel [a:num]
/interface Port-Channel[num]/evpn ether-segment

/!
/ip prefix-list loopback

/!
/router bgp [a:num]

/router bgp [num]/vlan [a:num]
|| /router bgp [num]/vlan [num]/rd [a:ip4]:[b:num]

pattern parameters
/hostname DEV [a:num] {a — 1}

/!

/interface Loopback[a:num] {a — 0}

/interface Port-Channel [num]/evpn ether—segment/route-target import [a:mac] {a +> 00:00:0c:d3:0b}

/interface Port-Channel[num]/evpn ether—segment/route-target import [a:mac] {a +> 00:00:0c:d3:6e}

/ip prefix-list loopback/seq [a:num] permit [b:pfx4]
/ip prefix-list loopback/seq [a:num] permit [b:pfx4]

/router bgp [num]/maximum-paths [a:num] ecmp [b:num]

{a —10.14.14.34}

{a — 11}

{a — 110}

{a — 10, b+ 10.14.14.34/32}
{a — 20, b—0.0.0.0/0}

{a — 65015}

{a — 64, b 64}

{a — 251}

{a —10.14.14.117, b+ 10251}

Figure 3. Context embedding and data extraction from the example configuration from Figure 1. Configuration lines are
pre-processed using an indent-based strategy. The extended path allows CoNcorb to differentiate between similar lines that
appear in different contexts. The original line is in red, and all extracted parameters from the lexer are shown on the right.

ways to structure hierarchical information in configurations
is generally very small. We also note that while structural
context can enhance CONCORD’s learning, it still learns useful
contracts in the absence of any embedding (§5).

3.2 Pattern and value extraction

Concorbp applies a lexing pass to separate each line into
a pair of a typed pattern and a parameter map. In the ex-
ample from Figure 1, CoNcorb infers the format category
as indent-based and captures the indentation hierarchy in
the line, shown in Figure 3. We use the / separator to de-
note the parents based on the path. The choice of / for
the separator is unimportant since CoNcorp will treat the
embedding line as uninterpreted text, and thus any text
separator may be used depending on the domain. For in-
stance, the line /router bgp 65016/vlan 251 has pattern
/router bgp [num]/vlan [a:num] with parameter map {a
> 251}. 2 These abstract “patterns” are useful because they
identify configuration lines with only minor differences and
enable learning contracts like “every loopback address is
permitted by a prefix list”

The lexer defines a set of basic types using regular ex-
pressions (e.g., numbers, IP addresses) and allows users to
provide additional regular expressions to identify known

ZNote: The lexer creates a typed pattern for the entire embedded line but
extracts values only for the original text. This is a simple optimization since
relationships may be found instead with original parent line.

Token  Regular Expression Rust type
[iface] ([aAlel[eElt!|...)-7[0-9]+ String
[descr] description .+ String
[bool] truel|false bool

[num] [1-9] [0-9] * BigInt
[hex] (0x10) [0-9]+ BigInt
[mac] [0-9a-zA-Z]+(: [0-9a-zA-Z]+){5} MacAddress
[ip4] [0-91+(\. [0-91+){3} IPAddress
[pfx4] [0-91+(\. [0-9]1+){3}/[0-9]+ IPNetwork

Table 1. Example lexer patterns that extract Rust data types.
User-defined patterns are above the dotted line.

domain-specific configuration objects like interface names.
This step is optional and low-effort, but provides users with
a way to refine how data values are captured by the tool.
Table 1 shows examples. Internally, CONCORD stores data val-
ues in corresponding Rust programming language data types.
For instance, it saves IP addresses using the IPAddress class,
which is used later for efficient contract learning (see §3.5).
The lexer is also extensible and supports custom regular ex-
pression patterns to allow users to define domain-specific
patterns (e.g., file paths).

We choose not to capture or bind variables for the embed-
ded context from the parent configuration elements. This
choice is due to the observation that Concorp will learn
many contracts between the captured parameters, few of
which are meaningful. Any real relationship between the
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parent and another line will be captured directly with the
bound variables from that parent line.

3.3 Background on item set mining

After pre-processing the configurations to construct a se-
quence of patterns and data values, Concorp efficiently
learns statistically likely contracts using the framework of
association rule learning [1]. Association rule learning is a
data mining technique that discovers significant relations
between data examples. It applies to item sets where one
assumes the existence of a set of items 7 and a set of trans-
actions 7, where each T € 7 is a subset of the items with
T C I.The goalis to learn rules of the form X — Y meaning
that transactions with item set X also contain item set Y. The
significance of a rule is quantified by two metrics: support
(S), the percentage of transactions in which both item sets
co-occur, and confidence (C), the percentage of item sets in
which the rule holds true.

In our setting, one can view each configuration as a trans-
action T and the typed patterns as comprising 7. However,
there are several important differences. First, network con-
figurations can contain ordered and repeated patterns such
as multiple interface definitions. Second, each pattern carries
with its data values such as IP prefixes or MAC addresses.

These differences necessitate learning a richer set of rules
such as those from Figure 1. Additionally, prior algorithms
for frequent item set mining such as Apriori [1] and FP-
Growth [28] generate frequent item sets with high support
first and then enumerate all candidate contracts between
items within these sets to evaluate their confidence. This
exhaustive search cannot scale to network configurations
that are often thousands of lines long.

3.4 Configuration contract mining

Table 2 gives an overview of the contract categories CON-
CoRrbD learns, examples of each contract, and the misconfigu-
rations that the contract identifies. We selected the categories
presented empirically, by observing their use in capturing
common misconfiguration patterns. It is also easy to extend
CONCORD to incorporate new categories. We now discuss
how CoNcoRbD learns each contract efficiently.

Relation contracts. Relational contracts such as those
from Figure 1 (@), @, and (3) identify dependencies be-
tween configuration elements. They quantify over all lines
matching a particular pattern and have the logical form: if
forall 11 ~ pilthen exists 12 ~ p2 such thatF, where F
is a formula over the values captured in 11 and 12. Relational
contracts detect misconfigured dependencies. We delve into
their implementation in §3.5.

Present contracts. Contracts like (5), (6), and (7) of the
formexists 1 ~ p state that the configuration must contain
at least one line 1 that matches a given pattern p. These
contracts, although simple, ensure that configurations do
not miss any essential components. To learn them, CoNCORD
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Contract Example

Present  Figure 1((3), (6), @)
Ordering Figure 1 (@)

Relation Figure 1 (D), @, ®) Invalid dependencies
Type [ip6] instead of [ip4]  Mistyped setting/value
Sequence Filter lines are sequential Missing/reordered lines
Unique  The router ID is unique ~Copy paste, resource reuse

Misconfigurations

Missing lines from a file
Reordered, missing lines

Table 2. The contracts CONCORD learns, usage examples,
and common misconfigurations they identify.

tracks every pattern used in each configuration and extracts
those that appear in more than C% of the configurations.

Ordering contracts. Ordering contracts, such as (9, dic-
tate that whenever a line 11 matches pattern p1, the nex-
t/previous line 12 must match pattern p2. CONCORD only
considers ordering contracts for immediate successor/pre-
decessor lines. This restriction facilitates quick learning and
reduces noise since ordering contracts will “chain” together
naturally to form blocks of lines that must appear together.
For each configuration, we calculate the frequency of each
successive pair of patterns (p1, p2). If p1 and p2 appear in
at least S% of configurations and p2 always follows p1 in
at least C% of the configurations, then CONCORD learns the
contract.

Type contracts. Misconfigurations often occur due to
simple type errors, such as using an IP prefix instead of an IP
address [53]. We write type contracts as the non-existence of
patterns, like ! (exists 1 ~ ip address [pfx4]).Learning
type contracts is subtle, as multiple types may be allowed for
patterns, such as ip address [ip4] and ip address [ip6].

CONCORD creates a type-agnostic representation for each
pattern by replacing typed parameters with an untyped
version. Both ip address [ip4] and ip address [ip6] be-
come ip address [type].Next, CONCORD calculates the fre-
quency of each type used for every parameter in each un-
typed pattern. A type is considered invalid if it appears in-
frequently in fewer than (100 — C)% of uses. For example,
CoNCORD deems ip address [bool] a type error.

Sequence contracts. Sequence contracts are similar to
ordering contracts and apply to number ([num]) parame-
ters. They assert that the values across all instances of a
given parameter are equidistant. For example, the pattern
seq [a:num] permit [b:pfx4] has the sequence contract
sequence (a), as its values include 10, 20, 30, etc. A parame-
ter is deemed sequential if it appears in at least S% of con-
figurations and is sequential in at least C% of the config-
urations. Like ordering contracts, sequence contracts can
identify missing sequential elements in configurations.

Unique contracts. The unique contract captures param-
eters with globally unique values across all configurations.
For example, hostname DEV[a:num] possesses the contract
unique(a), as each configuration has a distinct name. Unique
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contracts identify resources that should not be reused, such
as a unique IP address, and can prevent copy-paste errors.

3.5 Learning relational contracts

Recall that relational contracts from Figure 1 have the form:
if forall 11 ~ plthenexists 12 ~ p2suchthatF. A naive
approach to finding these contracts is to calculate C and S
for every pair of patterns p1 and p2, every pair of captured
values, and every formula F. This approach is infeasible, as
real configurations have tens of thousands of parameters
(see §5.1), leading to an explosion of candidate contracts.

A key observation is that the type of data relationship fa-
cilitates efficient search for contracts. For instance, consider
the contains contract from Figure 1 ((2)) stating that a prefix
value [pfx4] contains an IP address [ip4]. When searching
for candidate contains relationships, we can find the possi-
ble matching prefixes for a given IP address in logarithmic
time using a prefix trie data structure.

Thus, to efficiently identify possible relationships we em-
ploy fast relation search data structures. For contains con-
tract, we construct a prefix trie from all configuration prefix
values as illustrated in Figure 4. For equality contract, we
build a hash table that maps each data value to the set of
patterns and parameters it appears in. For affix (startswith
and endswith) contract, we build a string trie.

We construct a lookup data structure for each relation
type in a single pass over all configuration parameter values.
In a second pass, we enumerate possible relationships, for
instance reporting all matching (IP, prefix) pairs in the trie. If
a relationship holds for a pair of patterns in a configuration
and exceeds a score threshold (see below), then it is valid for
that configuration. CoNcoRbD learns the contract that is valid
for at least S% and C% of configurations.

Data transformations. For learning, it is often useful to
consider data transformations. For instance in (1), the con-
tract equals(hex(1l1l.a), segment(12.b, 6)) related the port
channel number to the last MAC segment by converting the
former to hex and extracting the latter from the MAC ad-
dress. To support such cases, CONCORD has a set of data
transformations for each parameter type (e.g., an IP octet)
and enumerates all such transformations prior to search. The
default transformation id is the identity function. We find
that a small set of transformations (e.g., type conversions) is
typically enough to cover many useful types of contracts.

Reducing false positives. Not every contract that holds
across examples reflects operator intent. Contracts involving
common patterns or values may arise coincidentally, whereas
those involving rarer or more diverse values provide stronger
evidence of intentionality. For example, numbers like 0-10
appear frequently in configurations and are more likely to
yield spurious matches, while a port with value 3394 is far
less likely to arise by chance and thus more likely to indicate
a meaningful relationship.
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i pl: seq [a:num] permit [b:pfx4]
! p2: ip address [a:pfx4]
| p3: ip route vrf MGMT [a:pfx4] [b:ip4]

0.0.0.0/0
[(p1, b, id)]

192.7.4.0/31
[(p2, a, id)]

192.7.4.0/32
[(p1, b, id)]

192.7.4.1/32
[(p1, b, id)]

Figure 4. Example prefix trie for efficient lookup of contains
relationships. The trie maps each [p£x4] value to its pattern,
parameter, and transformation.

To address this, CoNCORD employs a dynamic scoring and
ranking mechanism that evaluates each potential contract
along two dimensions:

o Instance-level informativeness. Each relation instance is
scored by how unlikely it is to occur coincidentally. For
example, the prefix 0.0.0.0/0 is assigned a score of 0 since
it trivially contains all IPv4 addresses, while more specific
prefixes (e.g., /24) receive higher scores. For numerical
values, a step function increases scores with distance from
0, reflecting that values like 3852 are less likely to co-occur
randomly than common values such as 1. While heuristic
and domain-agnostic (e.g., 8888 may be common despite
being large), this scoring aligns well with operator prac-
tices in real-world settings.

o Diversity-based aggregation. Scores are aggregated over
unique values, rewarding rules that generalize across di-
verse instances rather than repeating the same coincidence.
For example, a rule that holds for values {5, 6, 9, 11} is more
credible than one that always holds only for 5.

Contracts whose cumulative scores exceed a configurable
threshold are retained. This heuristic approach—penalizing
uninformative matches and rewarding diversity—effectively
filters spurious contracts while preserving useful ones. As
illustrated in Figure 1, this is why CoNcorb learns (2) but
rejects a spurious contract between rd 10.14.14.117:251
and seq 20 permit 0.0.0.0/0.

3.6 Relational contract minimization

In some instances, the contract set CONCORD learns after
filtering is still huge. Redundant contracts are undesirable
because they increase validation time, make it difficult for
humans to understand the contracts, and make it harder to
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debug multiple violations. This is especially prominent in
the case of transitive relations (where if pattern p1 implies p2
and p2 implies p3, then p1 must imply p3) such as equality,
startswith, and endswith. This problem is fundamental: n
patterns with mutual equality relations can have n? valid
contracts between them, one for each pair of patterns.
Since the ultimate purpose of learning contracts is to find
bugs, we observe that we can discard many contracts without
affecting this bug-finding ability. Consider the patterns p4,
p5, and p6 from Figure 5. Each has a named parameter (a) and
Concorbp identifies equality relations between all of them.
Rather than learn all six combinations of contracts, we use
the transitivity of equality to eliminate redundant, implied
contracts and learn a reduced contract set:
e forall 14 ~ p4, exists 16 ~ p6, 1l4.a == 16.a
e forall 16 ~ p6, exists 15 ~ p5, 16.a == 15.a
e forall 15 ~ p5, exists 14 ~ p4, 15.a == 14.a
If the configuration contains a bug, such as omitting a line for
pattern p5, it will still trigger a violation (second contract).
We reduce the problem of contract minimization to that
of graph transitive reduction [2]. The goal of transitive re-
duction is to replace a graph G, with a new graph G’ over
the same nodes. G’ minimizes the number of edges while
maintaining the reachability of G. In other words, for all
nodes ny, ny, a path exists from n; to ny in G iff a path exists
in G’. Intuitively, this reduction corresponds to contract min-
imization because we aim to minimize the number of edges
(contracts) while preserving reachability (bug finding).
CoNCoORD creates a node for each (pattern, parameter,
transformation) in the configuration, illustrated in Figure 5. It
connects two nodes with an edge e if it learns a relational con-
tract between those pairs. CONCORD computes the strongly
connected components (SCCs) of the graph to identify nodes
with complete connectivity (e.g., p4, p5, and p6) and replaces
all edges within this group with a simple cycle. Then, Con-
corbD collapses each SCC into a single node, resulting in a
directed acyclic graph, and executes a transitive reduction al-
gorithm to further eliminate edges. In Figure 5, this optimiza-
tion reduces the original 20 contracts to 9, and frequently
reduces a quadratic number of contracts (in the number of
related patterns) to a much small linear number.

3.7 External data sources & metadata

External information can provide additional context when
checking configurations. For example, a configuration might
refer to a file path, that may not be valid in the system envi-
ronment [66]. Automation generated the configurations in
Figure 1 from metadata files that describe the expected poli-
cies (see §5.5). If the automation is buggy, the configurations
may be wrong despite being internally consistent.
Concorp allows users to supply arbitrary “metadata” files
(e.g., the output of the 1s command) to enhance learning. We
apply same context embedding and data extraction phases
to these files and append their lines to each configuration.
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1 pl: interface Vlan[a:num]

p2: vlan [a:num]

p3: vxlan vlan [a:num] vni [b:ip4]
p4: Neighbor-[a:num]

p5: neighbor Neighbor-[a:num] bfd

p6: ip access-list list-[a:num]

(p1,

(p4, a, id) |

4

a, id)

(p2, a, id)

v

R ——

Figure 5. Contract minimization for patterns p1 through pé.
Each (pattern, parameter, transformation) pair forms a node
in the graph, and CoNcorp adds an edge between two nodes
with an for equals relation. Dashed red lines are removed.

The same learning algorithms discover any relationships
between the configurations and the metadata.

3.8 Contract checking

Checking contracts learned from §3 against new or changed
configurations lets CONCORD proactively identify bugs. Con-
CORD prepares the test configurations following the same
steps outlined in § 3.1 and § 3.2, converting the test con-
figurations into (pattern, parameter) pairs. Then it evalu-
ates each contract. For example, to check (1), after encoun-
tering the line interface Port-Channel1l, CONCORD finds
lines matching the pattern route-target import [b:mac].
If none have parameter b that satisfies the contract then it
reports an error with the configuration line numbers and
values involved.

3.9 Measuring coverage

Since CONCORD’s primary goal is to learn as many contracts
and thereby catch as many bugs as possible, a natural ques-
tion is how well the learned contracts “test” the configura-
tions. If a contract never checks a given configuration line,
we cannot expect to find bugs related to that line [12, 62].
Furthermore, knowing which configuration lines remain
untested can guide the development of new categories of
contracts and relationships to improve CONCORD.

While there are many known techniques for measuring
the coverage of executable code (e.g., branch coverage), con-
figurations are generally not directly executed. Instead, to
measure the completeness of the learned contracts, we define
a simple and natural notion of configuration coverage:
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A configuration line is covered if removing
it would violate at least one contract.

For the contract 3) from the example in Figure 1, the line
rd 10.14.14.117:10251 is covered since removing it would
result in an contract violation given the existence of line
vlan 251. CONCORD summarizes the percent of configura-
tion lines covered and also reports the coverage of each line.

4 Implementation

CoNCORD is a command line tool implemented in 6557 lines

of Rust. It offers two modes: concord learnand concord check.

In concord learnmode, it accepts a file glob pattern defining
training configuration files, an optional file specifying cus-
tom regular expression patterns for its lexer, and an optional
glob pattern for metadata files. It then generates a file with
a set of learned contracts in JSON format. In concord check
mode, it takes the same inputs along with the contract file
to check and reports all violations.

CoNcoRD accepts any configuration formats and includes
special pre-processors for context embedding of common
formats like JSON, YAML, and indentation-based formatting.
During checking, it summarizes the coverage according to
§3.9. Concorb outputs a JSON file containing contract viola-
tions with specific lines and generates a user-friendly HTML
output for viewing, filtering, and searching the violations.
Operators can provide feedback through this user interface
to suppress false positive contracts in the future.

The tool exposes three parameters that control learning:

e Support (S): the minimum number of configurations in
which a pattern must appear. By default, S = 5, ensuring
that contracts generalize beyond a handful of examples.

¢ Confidence (C): the required fraction of supporting in-
stances in which the contract must hold. We set a high
default of C = 96% to promote learning robust contracts
while tolerating some noise or exceptions.

e Heuristic scoring threshold: used to filter spurious pat-
terns, as described in §3.5.

Together, these parameters allow CONCORD to capture not
only universal rules but also non-universal contracts that ap-
ply to subsets of devices. For example, a pattern that appears
in 20 configurations and holds in 96% of those is retained,
even if it does not hold globally across the dataset. Such
flexibility is important in practice, since real networks often
have operational drift or intentional role-specific variation.

These parameters are configurable, and tuning depends
on the dataset. In a WAN with 50—100 routers per role drawn
from a common template, using high S and C values helps
filter a few outliers caused by misconfigurations. In more
heterogeneous datasets, looser settings may be more appro-
priate. As with other association rule mining approaches,
parameter selection balances precision and coverage.

CoNcoRrp also includes command line flags to specify the
parallelism level and enable a constant-learning mode to infer
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Dataset Lines Patterns Parameters Learn Check

E1 0(10%) 981 761 0.1s 0.1s
E2 0(10%) 169 72 0.1s 0.1s
W1 0(10°) 744 559 1.5s 4.3s
W2  0(10°) 4899 13936 4.0s 5.1s
W3 0(10°) 2701 2684 0.9s 0.7s
W4  0(10%) 9340 7944 16.0s  27.0s
W5  0(10%) 4131 2545 12.0s  22.0s
W6  0(10%) 9255 9432 333s  21.9s
W7 0(10°) 3115 2930 1.4s 0.9s
w8 0(10%) 707 232 0.1s 0.3s

Table 3. Dataset overview. The configuration lines, ex-
tracted patterns and parameters, concord learn runtime,
and concord check runtime for each dataset. The exact role
names and line counts are anonymized.

order and present contracts for exact line text. For instance,
it can identify that a prefix list must include an exact set of
lines. Finally, the implementation abstracts relation-learning
data structures (e.g., prefix trie) behind a simple interface,
making it easy to implement new relationships.

5 Evaluation

To evaluate CoNCORD, we collected two large production
network configuration datasets: mobile edge datacenter con-
figurations and wide-area network configurations. We aimed
to answer four questions regarding CoNcoRD’s effectiveness:

e RQ1: Can CoNCORD scale to large configurations?
e RQ2: Does CONCORD achieve high test coverage?
e RQ3: Are CONCORD’s learned contracts correct?

e RQ4: Is Concorp useful in practice?

5.1 Overview of datasets

We collected two extensive configuration datasets for dif-
ferent types of networks. These networks vary significantly
in size (from thousands to millions of lines), characteristics,
and structure (e.g., features and syntax).

Mobile edge datacenters. The mobile near edge DC con-
figurations are described in § 2. We specifically focus on
switch configurations that manage packet routing between
users, mobile core network functions (NFs) in the datacenter,
cloud management infrastructure, and the public Internet.
These DCs employ a leaf-spine architecture with varying
SKUs (e.g., 8 vs. 16 ToRs, 100G vs. 400G) based on deployment
requirements. The configurations are generated according to
the user policies and target SKU, where a SKU (stock keep-
ing unit) defines a pre-packaged, standardized solution that
includes hardware, software, topology, and workflows.

Wide-area network. We analyzed a large WAN, oper-
ated by a major cloud provider. This WAN has thousands
of routers with millions of configuration lines. Devices are
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assigned roles like edge routers and route reflectors. To opti-
mize cost, performance, and avoid vendor lock-in, the WAN
uses various hardware vendors for different roles.

Summary of networks. Table 3 presents an overview of
each dataset’s scale and characteristics. We divide the edge
configurations into two categories: E1 for “leaf” devices and
E2 for ToR devices. Similarly, we categorize the WAN into
eight device roles. The table includes the number of lines,
unique patterns, and parameters extracted by CoNcorp from
the configurations. We ran all experiments on a machine with
64GB RAM and a 3GHz Intel i9 CPU with 14 cores.

5.2 RQ1: Scalability of ConcorD

We evaluate the scalability of the tool by analyzing the run-
time for both concord learn and concord check in Table 3.
The table displays the time taken by the tool to learn con-
tracts for each dataset. As we can see, CONCORD is fast, with
concord learn taking under 34 seconds and concord check
completing in under 22 seconds in all cases, even on the
largest dataset W6 that consists of millions of lines of config-
uration. These times are inclusive of all aspects of CONCORD,
including file parsing, context embedding, data extraction,
contract mining, contract minimization, and contract check-
ing. These times could also easily be reduced by using more
cores as both contract learning and checking are parallelized.

Effectiveness of optimizations. To test the effective-
ness of our fast relation finding data structures on contract
learning and confirm our belief that naive contract learning
is ineffective at scale, we disabled these optimizations and
attempted to learn contracts by brute force (i.e., enumerating
and checking all candidate contracts). Doing so unsurpris-
ingly leads to non-termination of concord learn, which we
timed out after 1 hour, for every WAN configuration dataset.

Scaling trend of CoNcorp. To examine how CONCORD
scales with the number of configurations, we used the large
WAN datasets from Table 3 and created variable-sized sub-
sets of the configurations. We then normalized the number
of configurations and running time (combined learn and
check time) and plotted the normalized runtime against the
normalized network size (Figure 6). CONCORD scales nearly
linearly with the configurations.

5.3 RQ2: Coverage of CONCORD

For each dataset, role, and contract category, we record the
number of contracts learned with concord learn in Table 4.
Using those contracts, we apply concord check to the same
configurations to measure the test coverage (Cov) of the
contracts for that dataset—that is, what percentage of the
configuration lines would be tested by the learned contracts.
For almost all datasets, only a few thousand contracts cover
over 50% of the millions of configuration lines. Edge data-
center datasets have higher coverage (over 84%).

In addition to the total coverage for each dataset, we also
show the coverage contributed individually for each contract
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Figure 6. CoNcorD exhibits a linear scaling trend. The
shaded region represents the standard deviation.

Dataset Present Ord Type Unq Seq M Cov
E C A

E1 979 1543 356 90 0 644 175 9 84.5%
E2 169 300 60 14 2 26 14 6 874%
Total 1010 1630 367 95 2 666 184 9 -
Wi 380 974 300 38 9 280 19 2 66.3%
w2 540 1359 1642 51 0 3148 15 4 71.0%
W3 1845 3868 951 39 4 487 102 4 62.1%
W4 2741 12159 3598 269 29 2431 369 4 52.0%
W5 2964 6294 1065 80 23 715 256 4 59.6%
Wweo 3897 10070 2923 256 19 2442 380 4 49.9%
W7 1171 3148 1001 67 0 546 247 1 60.5%
W8 678 1234 165 23 0 117 94 0 68.6%
Total 7565 22313 7699 587 42 9217 869 10 -

Table 4. Contracts learned and coverage for each contract
type and dataset. Total is all unique contracts.

category and dataset in Table 5. We can see that the coverage
per contract category can vary greatly. For instance, the
unique contract provides 18.2% in W5, and only 0.8% in
WS8. The present, ordered, and equality relational contracts
provide the consistently highest coverage across all datasets,
while the affix and type invariants provide the least coverage.

The type contract by design cannot increase configuration
test coverage due to our choice of definition of coverage.
In particular, removing a line from a configuration cannot
lead to a violation of a type contract since it only identifies
mis-typed lines that exist in the configuration.

The affix relation learns the fewest contracts and thereby
has the lowest coverage. This is perhaps in part due to the
particularities of the datasets evaluated. We expect such rela-
tional contracts to be more useful in configurations that use
data objects such as file paths (e.g., a file must be an extension
of a directory configured elsewhere in the configuration).

While CoNcoRrD only needs to learn a few thousand con-
tracts to test the majority of lines in the configurations, manu-
ally authoring thousands of contracts and maintaining them
over time would be infeasible for humans in practice.
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Relational

Dataset Present Ord Unq Seq __ —~—
E C A

E1 23.4% 64.0% 7.6% 0.0% 28.3% 6.4% 2.8%
E2 143% 67.9% 6.6% 7.0% 248% 14% 7.6%
W1 10.4% 395% 43% 9.4% 13.1% 0.7% 1.2%
W2 219% 645% 68% 0.0% 81% 0.2% 0.1%
W3 259% 46.4% 13% 0.4% 20.5% 0.7% 0.0%
W4 23.0% 422% 22% 0.5% 164% 0.8% 0.0%
W5 25.2% 435% 18.2% 1.0% 23.1% 82% 0.0%
W6 32.7% 422% 19% 0.1% 154% 0.8% 0.0%
w7 26.7% 40.8% 1.0% 0.0% 23.0% 1.1% 0.0%
W3 19.5% 65.8% 0.8% 0.0% 49.7% 0.1% 0.0%

Table 5. CONCORD coverage by specific contract category.

B Baseline [ cContext [ Constants

100

T 80

L 60

=

S 40

e}

O 20
0

E1 E2 W1 W2 W3 W4 W5 W6 W7 W8

Figure 7. Effect of context embedding (§3.1) and constant
learning (§4) on coverage for each dataset.

Coverage improvement. We measure the effect of both
context embedding (§3.1) and constant learning (§4) on
the contract coverage in Figure 7. For each dataset, these
two optimizations lead to significant improvements in the
overall coverage of the learned contract set. Several roles
in the WAN (W4-W38) experienced no improvement from
context embedding because they used a “flat” vendor syntax
that already contains the complete context in each line. The
lower baseline coverage in the WAN is due to many globally
defined policies with “magic” constants that are disconnected
from the rest of the configuration. The constant learning
option helps identify and learn many of these policies.

Manually investigating the remaining untested configura-
tion lines, we found that a majority are due to policies such
as static routes and shared risk link groups, whose uses are
both unique per device and simultaneously unrelated to the
rest of the configurations.

Effectiveness of contract minimization. We evaluate
the effectiveness of contract minimization (§ 3.6) by com-
puting the contract reduction factor for relational rules per
dataset. The reduction factor ranges from 22.3x for W6, to a
minimum of 2.5% for W2, as shown in Figure 8.
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Figure 8. Effect of CONCORD’s contract minimization algo-
rithm for each network configuration dataset.

5.4 RQ3: Precision of CONCORD

Ideally, the learned contracts should reflect the actual con-
straints within configurations, meaning they should exhibit
low rates of false positives (learning invalid contracts) and
false negatives (omitting valid contracts). However, assessing
these rates is challenging since we do not have knowledge
of all the correct contracts. For this reason, similar to prior
work [53, 54, 66], we focus on measuring the precision of
Concorbp (of the contracts it learns, how many are valid).
However, even measuring precision is challenging since for
each dataset, CoNCcORD learned hundreds to thousands of
contracts per category, making it impractical to manually
assess the correctness of each one.

To estimate the precision, we needed to sample and manu-
ally review a large subset of the contracts. A natural question
is: how many samples is enough for a statistically significant
estimate of the true precision? Prior works on rule learning
such as ConfigV [53] use experts to review a small, ad hoc
number of learned rules (e.g., 70). To do better, we attempt
to obtain an estimate of the precision first, and then use this
estimate to solve for the number of contracts we need to
review manually for statistical significance.

To obtain an initial rough estimate of the precision, we
turned to large language models (LLMs), specifically, GPT-
4. For each dataset and contract category, we construct a
prompt, including two demonstration examples. We instruct
the LLM to act as an expert in analyzing network configura-
tions, with the task of evaluating whether a given contract
is likely valid for a specified role. We request a score from 1
to 10, with 10 indicating certainty that the contract is valid.
We adopt the chain-of-thought [58] prompting technique to
have the LLM provide a justification for its score. An example
prompt for the equality contract is shown in Figure 11.

Estimating sample size through LLM scoring. Figure 9
displays the cumulative distribution function (CDF) of the
scores given by the LLM for each contract category and
dataset. We estimate a contract as a true positive if its score
ranges from 6 to 10.

From these results, we compute the number of samples
that must be manually reviewed to achieve a 95% confidence
interval with a 5% error rate. In practice, this required a
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Figure 9. LLM scores for each contract type for WAN (blue) and edge networks (red). Scores (6-10 as true positives) provide
an initial precision estimate to guide the sample size for statistically significant manual review.

substantial manual effort: we reviewed and labeled 1243
contracts as true or false positives.

For each contract type, we estimate the required sample
size for a proportion using the following formula [16, 40]:

_Z%p-(1-p)
TR

where Z is the z-score for the desired confidence level (1.96
for 95%), p is the estimated proportion of true positives (de-
rived from the LLM scores), and E is the margin of error. The
resulting n indicates how many samples must be examined
to estimate the true positive rate with the specified accuracy.

Since we sample from a finite population of contracts, we
apply the finite population correction (FPC):

n
1+

Nadj =

R
N
where N is the total number of contracts for a given type.

Table 6 reports the adjusted sample sizes (n,4;) and corre-
sponding error rates (E) by category. While our target was
95% confidence with 5% error, in some cases like ordered
contracts, the initial calculation suggested reviewing over
500 contracts. To balance feasibility, we capped the manual
review at 150 per category. This cap slightly increased the
error rate, but it never exceeded 10%. For categories with
fewer than 10 contracts, we reviewed them all.

Manual estimate of precision. Table 7 shows the esti-
mated precision from manual review, which is consistently
very high with the exception of ordering contracts. The lower
precision for ordered contracts is caused by the automation
using a consistent, fixed format, like the sequence of an
interface’s description, IP address, and MTU, even though
the order is technically interchangeable. In our production
service, we simply disable ordering contracts (see §5.5).

Relational
Dataset Present Ord Type Unq Seq felational
E C A
i 102 150 36 13 2 150 122 9

Edge Padj
E 5% 10% 5% 5% 0% 7% 5% 0%
WAN Madj 42 150 70 122 29 150 86 10
E 5% 10% 5% 5% 5% 6% 3% 0%

Table 6. Number of samples manually examined (144;) and
the corresponding error rate (E) by specific contract category
for 95% confidence of true positive rate.

Example contracts. We showcase several of the more
simple and intuitive example contracts that CoNCOrD learned
in Table 8. For instance, the learned contract

forall 11 ~ ...RFC1918/seq [a:num] permit [b:pfx4]
exists 12 ~ ...PRIVATE/seq [a:num] permit [b:pfx4]
| equals(11.b, 12.Db) ‘

states that the defined internal address space for each device
includes private (RFC 1918) address space. While these exam-
ples are meant to that many contracts are simple intuitive,
Concorp also learned thousand of other contracts involving
specific low-level policies (e.g., a relationship between legacy
IGP configuration and NTP servers), which would have been
challenging to write or extract by hand.

5.5 RQ4: Utility of CoNcorD

We deployed CoNCORD as part of the Continuous Integration,
Continuous Deployment (CI/CD) pipeline for a cloud-based
network device configuration service used to manage the
mobile edge datacenter deployments described in §2. The
service takes user-defined network policies (metadata) and
generates low-level device configurations for these policies.
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Dataset Present Ord Type Unique Seq M
E C A

Edge 100 38 100 100 100 86 100 100

WAN 100 71 %4 90 100 92 98 80

Table 7. CoONCORD precision (in %). Ordered contracts have
lower precision as the tool learns fixed line order from gen-
erated configurations, though they are interchangeable. We
disable Ordered contracts by default.

Dataset Contract Description

The next hop addresses of management static routes

Edge are for well-defined management interfaces.
Inbound and outbound perimeter ACLs have symm-

WAN . L
etric destination and source address filters.

WAN Prefix-lists defining internal address space subsume
those that define bogon (RFC 1918) address space.

WAN If certain BGP group policies are configured for
IPv4, then they are also configured for IPv6.

WAN Every interface address should be unique

across all the interfaces and devices in a role.

Table 8. English descriptions of a selected subset of simple
and intuitive contracts that Concorp learned. CONCORD
also learned thousand of other contracts involving specific
policies, whose details we do not reveal.

The service must support numerous SKUs and vendor
platforms and contains complex logic to optimize switch
resources through the configuration based on the SKU and
platform. For instance, a low-end 100G SKU uses different
configuration than a high-end 400G SKU. Moreover, the cor-
rectness of this service is critical, as any configuration errors
can blackhole traffic and disconnect client network.

Prior to CONCORD, to ensure the correctness of the gener-
ated configurations, service maintainers manually curated
and authored custom contracts and automation to validate
different aspects of the configurations. However, maintain-
ing these contracts over time and understanding what the
“gaps” existed in these contracts presented a major challenge.

To address these challenges, we worked with the main-
tainers to deploy CoNcoRrbp as part of the CI/CD pipeline
for the service as depicted in Figure 10. When a developer
initiates a pull request for the service, the CI/CD pipeline
will run the service infrastructure code both pre-change and
post-change to generate configuration files from various test
user policies. CONCORD uses the pre-change configurations
to learn contracts, which it then checks against the post-
change configurations. Contract violations block the pull
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Figure 10. CI/CD workflow for the mobile edge datacenter
configuration management service.

request pending manual review as they may indicate soft-
ware regressions. Since CONCORD’s deployment, the service
has experienced no major outages due to configuration. How-
ever, we replayed several past incidents to see if CONCORD
would prevent them, of which we discuss just three now.
Example 1: Missing route aggregation. A change to a
data definition in the code base (i.e., an array of strings to
an array of structs) introduced a bug where a struct was not
checked for the null value. In this case, the service omitted
the configuration summarizing specific BGP routes with an
aggregate at the spine switches. The spine switches were con-
figured to filter non-aggregate routes, resulting in traffic be-
ing dropped for the entire fabric. When replayed, CoNCORD
flagged the issue early through a violation of the contract:

forall 11 ~ /ip route vrf Mgmt [a:pfx4] [b:ip4]
exists 12 ~ /vrf Mgmt/aggregate-address [a:pfx4]
| contains(12.a, 11.b)

which reported the absent aggregate line due to the presence
of a static route with a particular next hop IP address.

Example 2: MAC broadcast loop. As part of an effort to
reduce cost to customers, the service introduced a new SKU
with fewer switches. This new SKU required specific config-
uration changes to connect storage directly to spine devices,
and those changes were mistakenly extended to an earlier
SKU. The changes added erroneous layer 2 configuration that
created a broadcast loop during MAC learning. This caused
the switch CPU to monopolize resources and eventually led
to the fabric blackholing all traffic, including management
traffic the operators used to troubleshoot the problem. For
the existing SKU, Concorp learned the contract:

forall 11 ~ /router bgp/vlan [a:num]
exists 12 ~ @meta/nfInfos/vrfName/vlanId/[a:num]
i equals(ll.a, 12.a)

between the spine configuration and the network metadata
file. It correctly detected that several added VLAN configu-
ration blocks should not exist, catching the issue.
Example 3: Multiple VRFs. In a final case, a software
bug pushed incorrect configuration to a virtual routing and
forwarding (VRF) element. This caused multiple VRFs to
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learn the same routes over BGP EVPN and created a conflict
in the router forwarding information base (FIB). As a result,
both northbound traffic and southbound could be forwarded
incorrectly. CoNcorbp could identify this misconfiguration
through multiple ordering contracts such as:

forall 11 ~ redistribute connected '

! exists 12 ~ neighbor [a:ip4] peer-group OPT-A :

' equals(index(11) + 1, index(12)) :
The erroneous configuration was inserted between these
lines and thus broke this ordering contract.

6 Related Work

CoNCORD is related to several threads of research:

Network verification. Verification can find and even
prove the absence of bugs in network configurations. Verify-
ing a network requires both (1) formal mathematical model-
ing of the specific protocols and systems being configured
and (2) a complete set of contracts defining the intended
behavior of the network. Neither is easily obtained. Verifi-
cation has found success in some narrow networking con-
texts such as data plane (packet forwarding) [6, 7, 30, 37—
39, 44, 46, 63, 67] and for specific protocols such as BGP [4, 8-
10, 23, 25, 55, 56, 59] and DNS [34]. However, extending it
protocol-by-protocol is an arduous process [11].

Because CoNcorD does not model the semantics of net-
work protocols and because its contracts are primarily text-
based, it provides no guarantees of correctness. This stands
in contrast to the work on network verification. Instead, one
should view CONCORD as a best-effort configuration valida-
tor. In exchange, contracts have other advantages including
being scalable, actionable, protocol-agnostic, and learnable.

Configuration linters. Configuration “linters” also take
a heuristic approach to finding bugs. RCC [20], for example,
applied handcrafted heuristics to find issues in BGP router
configurations. SelfStarter [35] identified bugs in BGP route
filters, prefix lists, and ACLs by finding template outliers, and
Diffy [36] generalized this approach to hierarchical JSON
files. Another work [3], extracts configuration components
(e.g., interfaces, ACLs, VLANs) and relationships from JSON-
based configurations by inferring types and names using
attribute overlap, identifying cycles in the resulting graph
as recurring motifs to detect misconfigurations. However,
it is limited to structured JSON data. All these works either
manually target specific policies [20, 35] or require specific
formats [3, 36]. CONCORD is the first to learn complex struc-
tured contracts from plain text.

Configuration contract mining. Prior works like Con-
figC [54], ConfigV [53], and Encore [66] learn rules similar
to our ordering and relational contracts, but assume a model
where configurations are pre-parsed as pairs of unique keys
and values (e.g., the key max_connections has 64). Miner-
als [41] takes a similar approach, but for the BGP protocol.
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Aurora [45] applies a majority-rule approach to optimize
LTE/5G configurations which are also key value pairs. In
contrast, CONCORD treats configurations as unmodified text
and uses a more expressive model of configurations as a list
of patterns that carry data arguments. It then learns more ex-
pressive relational contracts of the form “forall line1l match-
ing patternl there exists a line2 matching pattern2 with
related data values”. Another line of work Config2Spec [13]
tries to learn end-to-end reachability invariants specifically
for packet forwarding in the context of routing protocols.
Our work focuses primarily on learning syntactic contracts
that have the aforementioned benefits of being scalable, ac-
tionable, protocol-agnostic, and easier to learn.

Association rule learning. CoNcorp broadly falls into
a data mining paradigm known as association rule learning,
which identifies frequent relations between items in datasets.
Classic algorithms such as Apriori [1] and FP-Growth [28]
employ a two-step approach—first generating frequent item
sets and then exhaustively searching for valid relations within
these sets. However, this approach is well known to be com-
putationally expensive, rendering it impractical for configu-
rations with thousands of lines. CONCORD extends conven-
tional association rule learning with multiple techniques to
efficiently filter candidate contracts and scale.

7 Conclusion

We presented CONCORD, a tool that learns contracts from ex-
ample network configurations. By checking these contracts
against configuration changes, CONCORD detects bugs be-
fore they can impact the network. Our approach does not
require protocol-specific modeling, making it applicable to a
wide range of network configurations. We demonstrated the
effectiveness of Concorp through evaluation on two large
real-world configuration datasets. We showcased its ability
to scale when analyzing and learning from large configu-
rations with millions of lines, to learn contracts with high
configuration coverage, to achieve a high true positive rate,
and to detect bugs in practice.
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LLM prompt

f - -
Task: As an expert in network configurations, your primary responsibility is to evaluate the validity of relationships between lines in
network configuration files. Each relationship is defined by two patterns. These patterns contain critical parameters highlighted within
triple brackets ([[[11]). Your task is to determine whether, if a configuration line matches patterni, there should correspondingly be
another line that matches pattern2, and crucially, whether the values within the triple brackets of both patterns are identical. You are
required to provide a score ranging from 1 to 10, where 10 indicates the highest confidence in the validity of the relationship. Along with
your score, please provide a detailed explanation justifying your assessment.

Background: Each configuration pattern includes parameters specified using square brackets. These parameters can be of various types
such as [num] for number, [ip4] for an IPv4 address, [ip6] for an IPv6 address, [prefix4] for an IPv4 prefix, etc. Importantly, each
configuration pattern also features a key parameter highlighted within triple brackets ([[[]111]), which is crucial for determining the
relationships between configuration lines.

Parent Context Indicator: Patterns starting with triple quotes (''"') indicate their parent context in the configuration. For exam-
ple, '''/interface Vxlan[num]/''' vxlan udp-port num suggests that the pattern vxlan udp-port num falls under the
interface Vxlan[num] context. The portion following the triple quotes is what you should assess.

Example 1:
Input:
{
"pattern1”: "'''/community-set [ N N ‘' (nun): [[[oum]]]",
"pattern2": "flow monitor-map IPFIX_IE_IPV[num] cache timeout rate-limit [[[num]]]",
"transformli": [],
"transform2": [],
"condition": {
"type": "Equality"
"Roles": [
||w3||
1
}

Explanation:

The relationship described involves linking BGP community set values with IPFIX flow monitoring parameters in W3 network
devices, potentially for enterprise routing. It specifies that a number representing a rate limit in an IPFIX configuration should
match a number in a BGP community set, suggesting that routes tagged with specific communities might have customized flow
monitoring settings. This could be relevant in complex networks where traffic from certain routes requires specialized monitoring due to
policy, security, or performance reasons. However, the connection between these two configurations — BGP communities and flow
monitoring — is unusual and not typically practiced, as they generally serve distinct functions within network management. Thus, while
the setup is technically possible and could be useful in specific scenarios, it is not a standard or widely recommended configuration practice.

Score: 3

Example 2:

Query input:

.

J

Figure 11. LLM prompt for scoring the equality contract. We have redacted the exact names used in the configurations.

Here, we utilized in-context learning (ICL), a simpler yet effective alternative to fine-tuning, to harness LLMs for performing

downstream tasks [18, 24, 27, 29, 32, 43]. It has task-specific natural language prompt to engage the LLM in a targeted evaluation.

Each prompt comprises three main parts: (1) Instruction: a directive explaining the task to the LLM ( Task, Background,

Parent Context Indicator ), (2) Demonstrations: examples of the input and expected output ( Example 1, Example 2 ), and (3)

Query: the input to analyze ( Query input ).
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