
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Finding Network Misconfigurations
by Automatic Template Inference

Siva Kesava Reddy Kakarla and Alan Tang, UCLA;
Ryan Beckett, Microsoft Research; Karthick Jayaraman, Microsoft Azure;

Todd Millstein, UCLA / Intentionet; Yuval Tamir and George Varghese, UCLA
https://www.usenix.org/conference/nsdi20/presentation/kakarla

Finding Network Misconfigurations by Automatic Template Inference

Siva Kesava Reddy Kakarla1, Alan Tang1, Ryan Beckett2, Karthick Jayaraman3, Todd Millstein1,4, Yuval
Tamir1, and George Varghese1

1University of California, Los Angeles, USA. 2Microsoft Research, Redmond, USA.
3Microsoft Azure, Microsoft, Redmond, USA. 4Intentionet, Seattle, USA.

Abstract
Network verification to detect router configuration errors

typically requires an explicit correctness specification. Unfor-
tunately, specifications often either do not exist, are incom-
plete, or are written informally in English. We describe an
approach to infer likely network configuration errors without
a specification through a form of automated outlier detection.
Unlike prior techniques, our approach can identify outliers
even for complex, structured configuration elements that have
a variety of intentional differences across nodes, like access-
control lists, prefix lists, and route policies.

Given a collection of configuration elements, our algorithm
automatically infers a set of parameterized templates, model-
ing the (likely) intentional differences as variations within a
template while modeling the (likely) erroneous differences as
variations across templates. We have implemented our algo-
rithm, which we call structured generalization, in a tool called
SELFSTARTER and used it to automatically identify config-
uration outliers in a collection of datacenter networks from
a large cloud provider, the wide-area network from the same
cloud provider, and the campus network of a large university.
SELFSTARTER found misconfigurations in all three networks,
including 43 previously unknown bugs, and is in the process
of adoption in the configuration management system of a
major cloud provider.

1 Introduction

Router configuration errors are a major cause of network out-
ages [1, 17, 19, 30, 35, 37]. Accordingly, researchers have
developed a variety of techniques to automatically identify
such errors and/or to prove their absence. Techniques that
began in academic research [16, 23, 24, 29] have migrated to
industry via cloud vendors [2, 20], router vendors [3], and
startups [4]. However, these approaches have an important
practical limitation: users must provide an explicit, formal
specification of the network’s intended behaviors (e.g., reach-
ability requirements) [14, 18, 23, 29]. In practice, such spec-
ifications often do not exist, and when they do exist, they

tend to be informal, incomplete, and ambiguous. A few tools
do not require a specification [15, 16] but then are limited
to identifying generic configuration errors (e.g., forwarding
loops, duplicate IP addresses), independent of the network’s
particular policy intent.

In this paper, we develop an approach to identify network-
specific misconfigurations without a specification, through a
form of outlier detection. The bugs as outliers paradigm [13]
is natural for network configurations, since, by design, many
nodes’ configurations are intended to be highly similar to
one another (e.g., all nodes playing the same role in the net-
work). We refer to any logical unit of a configuration, such
as a BGP session configuration or access-control list, as a
segment. Given a set of configuration segments that are in-
tended to be similar, our goal is to automatically identify
likely misconfigurations and provide actionable feedback to
fix them.

Prior work in outlier detection (§ 8) for network config-
urations [12, 28] assumes that configuration segments are
intended to be exactly equivalent to one another. Such ap-
proaches can identify outliers in the simpler aspects of a
configuration, such as the set of DNS servers and the MTU
values on interfaces. However, exact equivalence is much too
strong an assumption for detecting useful outliers for com-
plex configuration segments like access-control lists and route
policies. Such segments often have a variety of intentional
policy differences across nodes (e.g., the treatment of local
hosts or services). Hence, outlier detection must be able to
distinguish intentional differences from ones that represent
likely errors.

We describe a general approach to outlier detection that ad-
dresses this limitation. Given a set of configuration segments,
our algorithm, which we call structured generalization, infers
one or more segment templates. Each template is a segment
definition that is optionally parameterized by various pieces
of data (e.g., the IP address used on a particular line). These
templates serve as a compact summary of the differences
across network policies and induce an equivalence relation on
the nodes: two nodes are considered “equivalent” if they are

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 999

instantiations of the same template. In other words, we model
the (likely) intentional differences between nodes as varia-
tions within a template while modeling the (likely) erroneous
differences as variations across templates.

The key challenge is to infer templates that result in use-
ful equivalence relations. This requires a delicate balance
between templates that cover too few or too many configura-
tions. Parameterization is necessary to account for intentional
differences between segments. However, supporting arbitrary
parameterization would lead to overly-general templates that
mask important differences. Similarly, the ordering of some
configuration lines (e.g., consecutive permit lines in an ACL)
is semantically transparent. Hence, a single template should
admit such reordering. However, a single template that ad-
mits arbitrary reordering (e.g., arbitrary ACL permit and
deny lines) may result in masking semantic differences, thus
potentially hiding critical configuration errors.

Our structured generalization meets this challenge through
a novel two-level approach to matching segments with one an-
other. Sequence alignment is used to align blocks of segment
lines with one another, thereby admitting insertions and dele-
tions but ensuring that the order of blocks is respected. How-
ever, the similarity measure for this alignment employs bipar-
tite matching to match the lines within the blocks, thereby
admitting line reordering and also naturally inducing template
parameters wherever two matched lines differ. Our algorithm
is parameterized by the definition of blocks and the cost func-
tion for bipartite matching, which respectively control the
amount of reordering and parameterization. We also provide
instantiations of this generic algorithm for access-control lists,
prefix lists, and route policies.

We have implemented structured generalization in a tool
called SELFSTARTER. We applied SELFSTARTER to identify
configuration outliers in three different kinds of networks:
a large number of datacenters in a cloud provider network,
totaling on the order of O(10000) routers; the wide area net-
work (WAN) of a large cloud provider, containing hundreds of
routers; and the department routers of a large university cam-
pus network, containing ∼100 routers. In these networks, we
applied SELFSTARTER to three heavily-used segment types:
access-control lists (ACLs), which contain a sequence of
permit and deny lines that determine which packets to ac-
cept; prefix lists, which have a similar structure as ACLs and
are used to determine which route announcements to accept
during routing; and route policies, which flexibly match sets
of route announcements and update them in various ways
(e.g., to add a community tag).

For the datacenter, SELFSTARTER identified 1168 outliers,
of which 630 were investigated and all determined to be true
positives. For the wide area, SELFSTARTER identified 56
route policy outliers, of which 33 were investigated and all
were determined to be true positives. As SELFSTARTER
found new bugs that were previously unknown to operators,
it is in the process of being adopted in the configuration man-

agement process of the WAN. However, SELFSTARTER was
much less successful in identifying true positives for prefix
lists in the wide area; the reasons are explained in §6. For the
university network, SELFSTARTER identified 6 ACL outliers,
of which 3 were investigated and all were determined to be
true positives. SELFSTARTER’s metatemplates made it easy
for the network operators to quickly classify outliers as true/-
false positives and to remediate the actual misconfigurations.
Further, the templates that SELFSTARTER generated closely
matched any existing “golden” templates or configurations
for these networks.

We make the following contributions:
1. Automatic Template Inference: To our knowledge, we

are the first to propose the idea of automatic template
inference for network configuration segments and to
employ it to identify network misconfigurations (§2).

2. Structured Generalization: We present a novel algo-
rithm for automatic inference of parameterized templates
for network configuration segments that combines se-
quence alignment and bipartite matching in a two-level
structure to support controlled forms of parameterization
and reordering (§3 and §4).

3. Implementation: We have implemented structured gen-
eralization in a practical tool called SELFSTARTER (§5).

4. Evaluation: We describe our empirical evaluation of
SELFSTARTER on several large real-world production
networks, demonstrating that in most cases it generates
high-quality outliers with a low false positive rate (§6).

2 Using SELFSTARTER

We describe an example of SELFSTARTER’s output and its
use in finding misconfigurations in the campus network of
a large university. SELFSTARTER was given as input the
configurations of 106 building routers (one of the roles in
the network), along with a regular expression capturing the
name(s) of an access-control list (ACL) of interest used on
the routers.1 Given this input, SELFSTARTER automatically
inferred three templates, each of which is an ACL definition
that is parameterized by zero or more parameters.

Figure 1 shows SELFSTARTER’s output for this example.
Figure 1(a) shows a metatemplate, which is a concise repre-
sentation of the three inferred templates, highlighting their
commonalities and differences. A metatemplate is a sequence
of parameterized configuration lines. Capital letters like A and
B are parameters, representing values that differ across ACLs
that contain the corresponding line. The metatemplate is com-
plete: every line that appears in some ACL is represented by
a line in the metatemplate.

1We allow regular expressions instead of simple strings since some or-
ganizations append metadata to ACL names, so two ACLs with slightly
different names may still be intended to be similar.

1000 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 deny ip any 14.10.0.0 0.0.31.255

2 deny ip any 17.7.240.0 0.0.15.255

3 deny ip any 14.10.49.0 0.0.0.255

4 deny ip any 14.10.50.0 0.0.0.255

5 deny ip any 15.8.228.0 0.0.15.255

6 deny ip any 15.20.0.0 0.0.A.255

7 permit ip 15.B.C.D 0.0.E.F any

8 deny ip any any

(a) ACL Metatemplate

G 1
(88 ACLs)

G 2
(16 ACLs)

G 3
(2 ACLs)

(b) Groups
Figure 1: SELFSTARTER output for an ACL Regex in a university network. Groups 2 and 3 are confirmed to be anomalous.

Figure 1(b) identifies the three templates that SELFS-
TARTER inferred. Each column represents a group of nodes
that share a common template. Colors allow users to easily
see which lines of the metatemplate belong to each template.
For example, the template for the 88 ACLs in Group 1 con-
tains the metatemplate lines that are colored orange (vertical
bars) and gray (crosshatching), i.e., lines 1, 2, 6, 7, and 8.
Similarly, the template for Group 2 consists of lines 1-8, and
the template for Group 3 consists of lines 1-5, 7, and 8.

Though each of the example ACLs contains at most eight
lines, manually scanning the configurations from all 106
routers to find outliers would be onerous and error-prone.
Furthermore, partitioning the ACLs based on exact equiva-
lence would result in 53 different groups, since each building
has two routers with an identical ACL, but parameter values
differ from building to building. In contrast, SELFSTARTER’s
output makes it easy for network engineers to identify outliers
and to understand exactly how they differ from non-outliers.
Specifically, SELFSTARTER helps engineers to identify two
types of outliers, which we now describe.

Group Outliers. If SELFSTARTER produces multiple groups,
the network engineer can compare the templates for these
groups to decide whether one or more groups are misconfig-
ured. Groups that are relatively small in size are particularly
likely to be the results of misconfiguration. For example, in
Figure 1(b) the vast majority of the ACLs are in Group 1,
indicating that Groups 2 and 3 are suspect.

In fact, for this example, the network engineers have
confirmed that Groups 2 and 3 represent misconfigurations.
Group 3 erroneously omits line 6, allowing some flows that
should be denied. Further, both Groups 2 and 3 erroneously
include lines 3-5. While these lines used to be required to
prevent access to certain infrastructure servers, those servers
were phased out and the lines were supposed to be removed.
Further, some of the denied IP addresses had since been re-
assigned to servers that are intended to be accessible. Hence
these lines deny some flows that should be allowed.

Parameter Outliers. Structured configuration segments, like
ACLs, often differ across nodes. Hence, the ability to pa-
rameterize is critical for generating templates that identify
similarities without requiring exact equivalence. For each
parameter, SELFSTARTER maintains a mapping from nodes
to parameter values for the engineer to inspect.

A parameter error is present if some field in a line is sup-
posed to be constant across all the routers, but it is not. SELF-
STARTER guarantees that a parameter in some field of a line
in the metatemplate indicates that there must be at least two
different values for that field across the given configuration
segments. Thus, a parameter error is identified in the metatem-
plate by a field that contains a parameter instead of a constant.
In our example, out of the 104 ACLs that contain line 6, 94
use the mask 255 for parameter A, while 10 of them use the
mask 127. The network engineers confirmed that the 10 ACLs
are erroneous, permitting more traffic than intended.

SELFSTARTER is useful for finding errors and inconsisten-
cies in networks that are managed through manual creation
of individual node configurations. Perhaps surprisingly, we
have also found SELFSTARTER to be useful for networks that
employ forms of automation to manage configurations.

First, many network engineers employ configuration tem-
plates, with one parameterized template per role in the net-
work. This simplifies network management since node config-
urations can be created by instantiating the relevant template
with node-specific parameter values. For example, the univer-
sity network described above has a template for all building
routers. However, this network still suffered from multiple
misconfigurations identified by SELFSTARTER. The problem
is that node configurations tend to drift over time from their
original templates. Such template drift happens for several
reasons. First, operators often must manually edit a node’s
configuration, for example to quickly address a problem or to
perform maintenance of various kinds. Second, the templates
themselves get updated over time, and often operators are
relied upon to manually perform the necessary configuration
updates. Hence there is typically still considerable manual

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1001

configuration in practice, which can easily lead to errors.
Second, some networks employ automated scripts to de-

ploy, update, and validate configurations consistently. In this
situation, SELFSTARTER is useful to protect against bugs in
the automation software itself. Automation may actually in-
crease the need for validation tools like SELFSTARTER, since
small errors in the automation can lead to large, network-wide
misconfigurations. The wide-area network (WAN) that we
analyzed employs automation scripts for various purposes,
and SELFSTARTER discovered misconfigurations that were
due to previously unknown script errors. Once reported, the
network engineers promptly confirmed and fixed the errors.

3 Structured Generalization

Our structured generalization algorithm takes as input a col-
lection of configuration segments and outputs a metatemplate
for these segments in the form shown in Figure 1. After an
overview of the key challenges, we present the generic algo-
rithm and then describe how it is instantiated for ACLs, prefix
lists, and route policies.

To provide high-quality outliers, the algorithm must be
given configuration segments that are intended to be similarly
structured. For example, it is common for routers to be par-
titioned into roles (e.g., border routers, core routers) and for
the routers within a role to be configured similarly. We rely
on the user to provide an appropriate set of configuration seg-
ments to be templated. In our experience (see §6), operators
know the roles in their network and can quickly identify the
segments that are intended to be similar, so this requirement
does not pose a large burden in practice.

3.1 Challenges
Suppose that we wish to create a metatemplate for the three
different configurations of the same ACL shown in Figure 2.
We use this example to illustrate the challenges that our algo-
rithm must address.

Consider the first two ACLs in Figure 2. Their first lines
are identical, so clearly they should be matched to one another.
However, their second lines differ — they apply to different
source IP addresses. A naive approach is to simply not match
these lines to one another. However, such an exact-matching
criterion is much too strong, as it is common for correspond-
ing ACLs to be similar but not identical across nodes, for
example to treat local addresses specially. Therefore, the
algorithm must be able to match non-identical lines to one
another. This requirement is met using parameterization. In
this example, we can introduce a parameter to represent the
third octet in the source IP address, indicating that this octet
differs in each ACL while the rest of the line is identical.

While limited parameterization is necessary, arbitrary pa-
rameterization would yield undesirable results. For example,
it would not be useful if the metatemplate matches a permit

ip access-list extended ACL1
1 deny udp host 0.0.0.0 any
2 permit tcp 17.12.11.0 0.0.0.255 any
3 deny icmp 17.12.11.0 0.0.0.255 any
4 permit ip 16.21.0.0 0.0.63.255 any
5 permit ip 17.12.11.0 0.0.0.255 any

ip access-list extended ACL2
1 deny udp host 0.0.0.0 any
2 permit tcp 17.12.13.0 0.0.0.255 any
3 deny icmp 17.12.13.0 0.0.0.255 any
4 permit ip 17.12.13.0 0.0.0.255 any
5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL3
1 deny udp host 0.0.0.0 any
2 permit ip 17.12.16.0 0.0.0.255 any
3 permit tcp 10.4.0.0 0.0.63.255 any

PERMUTATION

MATCHING
BLOCKS

PARAMETERS

MISMATCH

ADDED LINES

Figure 2: Configurations of the ACLs matching the ACL*
regex from three different routers highlighting the challenges.

line with a deny line, as their behavior is not at all similar.
As a more subtle example, consider the last line in ACL3 in
Figure 2. This line is similar to the last line in ACL2. However,
since the two lines specify different protocols (tcp vs. ip), it
is unlikely that they are intended to serve the same function
in the ACLs. Hence, despite being similar, it may not make
sense to match these two lines. Therefore, there is a need
for an ability to specify different constraints on what can and
cannot be parameterized for different segment types.

Now consider lines 4 and 5 in ACL1 and ACL2. Line 4
in ACL1 is similar to line 5 in ACL2. To match these lines
to one another, the algorithm must support reordering of
configuration lines. Doing so requires a scoring metric to
determine which line pairs are the best matches. Such a
scoring metric also naturally handles missing lines, as in
ACL3, resulting in there being multiple options for how to
match the lines present in ACL3 to those in the other ACLs.

As with parameterization, allowing arbitrary line reorder-
ing would yield undesirable results. Specifically, reordering
a permit line and a deny line can, in general, change the
semantics of an ACL. Therefore, matching lines across ACLs
in a way that requires such a reordering can potentially mask
important differences between ACLs. Thus, as with param-
eterization, we need the ability to specify constraints on the
allowable reorderings for different segment types.

Our structured generalization algorithm, described below,
meets these challenges through a novel two-level approach.

3.2 Algorithm
The algorithm partitions segments into blocks of lines that
must not be reordered with one another and hence are matched
using sequence alignment. However, when matching two
blocks with one another, the algorithm employs bipartite
matching on their lines, thereby supporting line reordering
within blocks and also inducing parameters wherever two

1002 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 STRUCTURED GENERALIZATION

Input: S1, S2, . . . Sn - Sequence of segments to be templated
Output: Metatemplate for S1, S2, . . . Sn
1: Metatemplate T ← S1
2: for Si ←{S2, . . . ,Sn} do
3: Block sequence B1 ← GETBLOCKSEQUENCE(T)
4: Block sequence B2 ← GETBLOCKSEQUENCE(Si)
5: Alignment A← ALIGNSEQUENCES(B1 , B2 , MISMATCHSCORE)
6: T ← GENERATEMETATEMPLATE(A, B1 , B2)
7: end for
8: T ← MINIMIZEPARAMETERS(T)
9: return T

matched lines differ. The amount of reordering and parame-
terization are respectively controlled through a function that
partitions segments into blocks and a function that determines
edge weights for bipartite matching.

The structured generalization algorithm is shown in Algo-
rithm 1. The algorithm starts by treating the first segment S1
as the initial metatemplate (Line 1). It then iteratively com-
bines the current metatemplate with each remaining configura-
tion segment, one at a time, to produce the final metatemplate.

At each iteration the algorithm performs three main steps:
1. Block Generation: A block is a contiguous sequence

of lines within a segment that can be reordered with one
another. The GETBLOCKSEQUENCE function partitions
each segment into blocks (Lines 3 to 4) and is specific to
a particular segment type. For example, for ACLs the GET-
BLOCKSEQUENCE function partitions a segment into maxi-
mal sequences of lines that have the same action (permit or
deny). The block abstraction and corresponding GETBLOCK-
SEQUENCE function provide a natural way to admit reorder-
ings within a block while forbidding those across blocks.

2. Block Alignment and Line Matching: Blocks are
matched in the two block sequences B1 and B2. To prevent
cross-block reorderings, a standard sequence alignment al-
gorithm is employed at the block level (Line 5). Such an
algorithm finds a minimum-cost alignment between the two
block sequences, allowing gaps but not reorderings.

To meet the need to support within-block reorderings, our
algorithm leverages the fact that the sequence alignment al-
gorithm requires a function MISMATCHSCORE that provides
the cost of matching two blocks to one another.2 The MIS-
MATCHSCORE function is shown in Algorithm 2. The func-
tion first breaks the two blocks into lines, and then it performs
a minimum-weight bipartite matching between the two line
sequences using a standard matching algorithm, thereby sup-
porting line reordering. The function returns the score for the
best matching and also the matching itself.

The MISMATCHSCORE function uses another function,
LINESCORE, to assign weights to each edge in the bipar-
tite graph (between a pair of lines). This function is specific

2Sequence alignment algorithms also require a function to provide the
cost of introducing a gap; we use a simple metric for this cost based on the
size of the unmatched block.

Algorithm 2 MISMATCHSCORE

Input: {b1, b2} - Blocks to be matched
Output: A score for aligning b1, b2 and a matching between their lines
1: Line sequence L1 ← GETLINESEQUENCE(b1)
2: Line sequence L2 ← GETLINESEQUENCE(b2)
3: Score S, Matching M← MINIMUMWEIGHTBIPARTITEMATCHING(L1 ,

L2 , LINESCORE)
4: return S, M

to each type of segment and provides a flexible way to prevent
undesired line matchings and to prioritize among different
possible line matchings.

3. Parameterization: Once the two block sequences have
been aligned, the metatemplate is generated (Line 6). As
described above, for each pair of blocks that are aligned with
one another, the MISMATCHSCORE function also provides a
matching at the line level. For each pair l1 and l2 of matched
lines, the metatemplate includes their least general generaliza-
tion (lgg) [34]. Intuitively, this is simply a version of l1 where
a parameter is introduced in each field where it differs from l2.
For example, the lgg of the second lines in the first two ACLs
in Figure 1 is permit tcp 17.12.P.0 0.0.0.255 any,
where P is a new parameter.

As a final step, the number of parameters in the metatem-
plate is globally minimized (Line 8). Specifically, let P(S)
denote the value that parameter P takes in segment S. If two
parameters P0 and P1 in the metatemplate have the property
that P0(Si) = P1(Si) for each segment Si, then the parameters
are merged into a single parameter.

3.3 Instantiation for ACLs and Prefix Lists

This subsection discusses how the structured generalization
algorithm is instantiated for ACLs and prefix lists, which are
handled identically. Doing so requires providing specific GET-
BLOCKSEQUENCE and LINESCORE functions to the generic
algorithm above. The goal is to take advantage of the par-
ticular properties of ACLs and prefix lists to both allow for
flexible templating and ensure that generated templates are
actionable, i.e., they facilitate the identification of common
configuration errors.

The GETBLOCKSEQUENCE function partitions an ACL or
prefix list into maximal sequences of lines that have the same
action (permit or deny). This allows reorderings guaranteed
to have no behavioral effect. The notion of blocks can be
relaxed to admit more reorderings. For example, reordering a
permit line with a deny line does not change behavior when
the sets of packets that they handle are disjoint. However, in
practice, we have not encountered the need to support such
reorderings, so the extra complexity is not warranted.

The LINESCORE function for ACLs and prefix lists pro-
hibits matching lines that differ in either their action (permit
or deny) or protocol by returning an infinite weight. All other
differences (e.g., in source or destination IP addresses) are

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1003

route-map static-to-bgp permit 10 route-map static-to-bgp permit 10
match ip address prefix-list inet match community campus
match community campus match ip address prefix-list inet
set origin igp set origin igp
set community X:65514 additive set community Y:65530 additive

route-map static-to-bgp permit 20
match ip address prefix-list bckp
set weight 0
set local-preference 150

route-map static-to-bgp permit 20 route-map static-to-bgp permit 30
match ip address prefix-list voip match ip address prefix-list voip

set weight 0
set metric 50 set metric 100

Permuted
lines

E
xt

ra
bl

oc
k

Extra command

Figure 3: Example: Two route policies.

allowed but are penalized by an increase in overall score.
Specifically, consider some field of the two lines that is al-
lowed to differ (e.g., the first octet of the source IP address). If
the lines agree on the value of this field, then the overall score
is unchanged. If one field contains a constant while the other
contains a parameter name (which must have been introduced
in an earlier iteration), then the overall score is increased by 1,
since an exact match is preferable. Finally, if the lines contain
different constant values in this field, then the overall score is
increased by 2, since a new parameter must be introduced in
order to match the lines, so either of the above two cases is
preferable. Despite its simplicity, this scoring function works
well across all of our experiments (§6).

§4 contains a detailed example of the structured general-
ization algorithm applied to the ACLs in Figure 2.

3.4 Instantiation for Route Policies
Route policies are flexible configuration segments used in sev-
eral contexts, including route redistribution filtering, policy-
based routing, and BGP policy implementation. A route
policy is defined as a sequence of route map clauses, each of
which contains an action (e.g., permit), a list of match lines,
and a list of set lines.3 The match lines provide a flexible way
to select route announcements of interest based on the route
attributes. The set lines then update matching announce-
ments (e.g., to add a particular community tag). Figure 3
shows two example route policies.

The GETBLOCKSEQUENCE function for route policies puts
each clause in one block, so the left and right route policies
in Figure 3 respectively contain two and three blocks. This al-
lows the match lines within a route map to be reordered with
respect to one another, and similarly for the set lines.4 Since
all match lines have to succeed for a route announcement to
match the route map, reordering them has no effect. In princi-
ple, reordering set lines can change behavior, specifically if
one set line reads a value that was updated by a previous set
line. In our experience, however, order dependence is rare:
we have encountered only one such situation (where the dele-

3Here we have used the syntax from Cisco IOS; the JunOS syntax from
Juniper uses different keywords but is semantically similar.

4Technically it also allows match and set lines to be reordered with one
another, but that is not syntactically legal so will never arise.

tion to a community attribute was followed by an addition).
Therefore we opted to allow reordering of set lines within
route maps to handle the common case properly.

The LINESCORE function for route policies allows two
lines to be matched in the bipartite matching only if they refer
to the same attribute of the route announcement. For example,
the match community campus line in the left route policy
of Figure 3 can only match against other match community
lines, and the following set origin igp line can only match
against other set origin lines.

With route policies it is common for match lines to refer
to prefix lists and access lists defined elsewhere in the con-
figuration. For example, the first match line in the left route
policy refers to the prefix list named inet. When scoring two
lines that refer to a named segment, we choose to perform
a shallow comparison that considers them to exactly match
if they refer to same-named segments. An alternative would
be to perform a deep analysis that ignores the names and
instead expands the definitions of these segments in order
to recursively compare them. From our experiments on a
large cloud provider network, we found that simple name
comparison works well, since the network names segments
identically across configurations. Further, if two same-named
segments do differ in their definitions, that will be caught
during metatemplating of those segments.

Figure 3 illustrates the best alignment of the two route poli-
cies, based on the GETBLOCKSEQUENCE and LINESCORE
functions described above. Specifically, the second clause
of the left policy is aligned with the third clause of the right
policy. That is the lowest-cost alignment since these route
maps match on the same-named prefix list announce and both
have a line to set the metric.

4 A Templating Example

This section describes how Algorithms 1 and 2 generate
a metatemplate for the three ACLs in Figure 2. Figure 4
shows ACL1 and ACL2 side by side; we use superscripts to
uniquely refer to each permit and deny line. The STRUC-
TURED GENERALIZATION algorithm designates ACL1 as the
initial metatemplate (Line 1) and iteratively incorporates ACL2
and ACL3 to produce the final metatemplate (Lines 2 to 7).

In the first iteration, the “Block Generation” step partitions
ACL1 (Line 3) and ACL2 (Line 4) into blocks. For ACL1, the
algorithm generates the block sequence B1 consisting of four
blocks — Da, Pa, Db, and Pb — where Da contains deny1,
Pa contains permit1, Db contains deny2, and Pb contains
permit2 and permit3. The algorithm generates an analogous
block sequence B2 for ACL2, with four blocks that we denote
Dx, Px, Dy and Py.

Next, in the “Block Alignment and Line Matching” step,
the algorithm uses the sequence alignment algorithm, which
in turn relies on the MISMATCHSCORE(b1, b2) function in
Algorithm 2. It turns out that the following alignment A is the

1004 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

denydeny1 udp hosthost 0.0.0.00.0.0.0 anyany denydeny3 udp host 0.0.0.00.0.0.0 anyany

permitpermit1 tcptcp 17.12.11.017.12.11.0 0.0.0.2550.0.0.255 anyany permitpermit4 tcptcp 17.12.13.017.12.13.0 0.0.0.2550.0.0.255 anyany

denydeny2 icmpicmp 17.12.11.017.12.11.0 0.0.0.2550.0.0.255 anyany denydeny4 icmpicmp 17.12.13.017.12.13.0 0.0.0.2550.0.0.255 anyany

permitpermit2 ipip 16.21.0.016.21.0.0 0.0.63.2550.0.63.255 anyany permitpermit5 ipip 17.12.13.017.12.13.0 0.0.0.2550.0.0.255 anyany

permitpermit3 ipip 17.12.11.017.12.11.0 0.0.0.2550.0.0.255 anyany permitpermit6 ipip 16.23.0.016.23.0.0 0.0.63.2550.0.63.255 anyany

ip access-list extended ACL1 ip access-list extended ACL2

Figure 4: Side by side comparison of ACL1 and ACL2

permit2

permit3

permit5

permit6

88

88

22

22

Figure 5: Bipartite graph of Pb and Py

deny udp host 0.0.0.0 any denydeny udp host 0.0.0.0 any

permit tcp 17.12.A.0 0.0.0.255 any

deny icmp 17.12.B.0 0.0.0.255 any

permit3,5 ip 17.12.C.0 0.0.0.255 any permitpermit7 ipip 17.12.16.0 0.0.0.255 any

permit2,6 ip 16.D.0.0 0.0.63.255 any permitpermit8 tcptcp 10.4.0.0 0.0.63.255 any

ip access-list extended ACL* ip access-list extended ACL3

Figure 6: Comparing the metatemplate for ACL1 and ACL2 with ACL3

permit3,5

permit2,6

permit7

permit8

11

∞∞

∞∞

77

Figure 7: Bipartite graph of last permit block

optimal alignment for the two sequences.

(Da,Pa,Db,Pb)

(Dx,Px,Dy,Py)

The single line in Da is matched with the single line in Dx,
and similarly for the next two pairs of blocks in the align-
ment. For the last pair of blocks (Pb, Py), the algorithm
constructs the bipartite graph shown in Figure 5 to determine
line matchings. The LINESCORE(l1, l2) function assigns the
edge weight of permit2 and permit6 as 2 since the lines dif-
fer in the second octet of the source IP, but the edge weight
of permit2 and permit5 is assigned as 8 since they differ in
four octets total across the source IP and source mask. There-
fore, the minimum weight matching (Line 3) matches permit2

with permit6 and permit3 and permit5, thereby performing
the allowable reordering.

The “Parameterization” step generates the metatemplate by
introducing parameters based on the produced sequence align-
ment and line matchings (Line 6). The resultant metatemplate
of ACL1 and ACL2 is shown on the left side in Figure 6. The
two ACLs have a common template; the line produced by
merging permit3 with permit5 is shown as permit3,5 in the
metatemplate, and similarly for permit2,6.

The next iteration incorporates ACL3. The metatemplate
from the first iteration and ACL3 are both partitioned into
blocks, and then these blocks are aligned in the same way as
described above. The best block alignment and line matching
are shown in Figure 6. As an example, the bipartite graph
constructed to calculate the MISMATCHSCORE of the last
block in each block sequence is shown in Figure 7. The edge
weight of permit3,5 and permit7 is 1 since there is already
a parameter in the metatemplate for the source IP address
octet where the two lines disagree. The LINESCORE function
gives the edge between permit3,5 and permit8 a score of ∞

since lines with different protocols cannot be matched. The
minimal-weight matching matches permit3,5 with permit7

and leaves lines (permit2,6 and permit8) unmatched. This

deny udp host 0.0.0.0 any

permit tcp 17.12.A.0 0.0.0.255 any

deny icmp 17.12.B.0 0.0.0.255 any

permit3,5,7 ip 17.12.C.0 0.0.0.255 any

permit2,6 ip 16.D.0.0 0.0.63.255 any

permit8 tcp 10.4.0.0 0.0.63.255 any

ip access-list extended ACL*

(a) Metatemplate of all three ACLs

G 1 G 2
(2 ACLs) (1 ACLs)

(b) Groups

ACL1: [A = 11, B = 11, C = 11, D = 21]

ACL2: [A = 13, B = 13, C = 13, D = 23]

ACL3: [C = 16]

(c) Router parameter value map

Figure 8: Result of templating ACL1, ACL2 and ACL3

example demonstrates the need to match blocks but also to
identify gaps due to missing/extra lines.

The resultant metatemplate for the three ACLs is shown in
Figure 8(a), the ACL groups are shown in Figure 8(b), and
the parameter-value map is shown in Figure 8(c). Finally, as
explained in §3.2, the algorithm can create more parameters
than necessary. For example, in Figure 8, parameters A, B
and C are redundant: for every router R that requires all of
these parameters, R instantiates the parameters with the same
value. Therefore, the parameter minimization step (Line 8)
merges A, B and C into a single parameter.5

5 Implementation

SELFSTARTER6 takes as input a set of router configurations
and a segment name or regular expression. It outputs a

5A degenerate case occurs when two parameters are never required to-
gether by any router; in that case we do not merge the parameters since they
are likely to be logically unrelated.

6https://github.com/SivaKesava1/SelfStarter

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1005

metatemplate for all segments that match the given name or
regular expression, a partitioning of each segment into groups
that share a common template, and a parameter mapping for
each segment, as shown in Figure 8.

SELFSTARTER is written in Python. It uses PYBATFISH,7

a client for the BATFISH network configuration analysis
tool [16], to parse the raw vendor-specific configuration files
into BATFISH’s vendor-agnostic format. This format provides
a structured representation of the configuration data, and our
algorithm works directly on this representation. BATFISH can
parse many different configuration formats, including those
from Cisco, Juniper, and Arista, so in turn SELFSTARTER can
infer templates for segments from all of these vendors.

Our structured generalization algorithm uses a standard
algorithm for sequence alignment based on dynamic program-
ming, in order to align block sequences. Lines within a block
are matched using the Python library munkres, which im-
plements Munkres’ improvement on the standard Hungarian
matching algorithm to be (strongly) polynomial [25, 26, 33].
We also perform one major optimization over the algorithm.
Given the collection of segments to template, SELFSTARTER
first removes all duplicates from the collection — segments
whose representation in BATFISH’s format are identical to
that of some existing segment in the collection. Since there
are often subsets of the configurations in a role that are meant
to be exactly identical, this optimization can significantly im-
prove the efficiency of structured generalization by reducing
the number of calls to the expensive matching algorithms.

The order in which segments are considered for templating
can affect the final metatemplate and groups produced. Our
implementation uses a simple heuristic. The segments are
partitioned based on their line counts. The segments in the
largest partition (i.e., the partition containing the most seg-
ments) are templated first, choosing segments randomly from
that partition until it is empty. The remaining segment parti-
tions are then processed in order of decreasing partition size.
Intuitively this heuristic tries to template segments that are
likely to be outliers last, so that their impact on the templates
of other segments is minimized.

The structured generalization algorithm produces a
metatemplate in BATFISH’s vendor-agnostic format, but SELF-
STARTER must output the metatemplate in some vendor-
specific format in order to be understandable to network en-
gineers. Currently SELFSTARTER outputs metatemplates in
Cisco’s IOS format. This has been sufficient to get feedback
for our experiments (§6), since the majority of nodes use that
format, and it is similar enough to the other formats for the
engineers to understand the results. It would be straightfor-
ward to add pretty printers to output the metatemplate in other
vendor-specific formats in the future.

Given the results of the structured generalization algorithm,
SELFSTARTER finally produces the output visualization as

7https://github.com/batfish/pybatfish

shown in Figure 8. First the metatemplate lines are partitioned,
where two lines are placed in the same subset if and only if for
every segment, either both lines are in the segment or neither
is. Then a color is chosen for each subset, each inferred
template is mapped to the set of colors of its lines, and the
colored tables are created and output as HTML files.

6 Evaluation

To evaluate SELFSTARTER, we applied it to a collection of
datacenter networks from a large cloud provider, a wide area
network from the same cloud provider, and the campus net-
work of a large university. These networks differ widely in
their structure, scale, and management style. Yet SELFS-
TARTER identified misconfigurations in all of them; in two
of the three networks SELFSTARTER identified previously
unknown errors. Further, SELFSTARTER’s inferred templates
closely match any manually written templates that exist for
these networks. A dominant cause of the errors that SELF-
STARTER identified were planned configuration updates not
yet applied or inconsistently applied. We ran SELFSTARTER
on a 3.6 GHz quad-core machine with 32 GB of RAM.

Methodology: For each network, we obtained a snapshot
of the router configurations and partitioned them into roles
based on router names, sometimes with the help of the net-
work operator. We then parsed the configurations with BAT-
FISH and ran SELFSTARTER on the output once per triple,
where a triple is a tuple of a segment type (e.g., ACL), role
(e.g., the border routers), and segment name or regular ex-
pression (e.g., border-out-1). SELFSTARTER produces a
metatemplate for each triple.

Network Number
of routers

Number
of roles

Number
of triples

BATFISH
parsing time

SELFSTARTER
running time

Datacenter O(10000) O(1000) 25475 150 min 90 min

WAN O(100) O(100) 21011 14 min 20 min

Campus 106 1 6 2 min <2 min

Table 1: Networks’ parsing and running times

Table 1 shows the order of magnitude of each network in
number of routers and roles, along with the number of triples
on which we ran SELFSTARTER8 and the time for BATFISH
parsing as well as the total time to run on all triples.

We define a consistent triple to be one whose metatem-
plate consists of only a single group (i.e., all segments meet
the same template). Similarly, an inconsistent triple is one
for which SELFSTARTER generates a metatemplate with at
least two groups. We consider all inconsistent triples to be
group outliers, and we report the number of such outliers as
well as the number that are true/false positives, by comparing
with the ground truth (either a “golden” configuration or the

8For confidentiality, we cannot disclose the exact number of routers and
roles for the cloud provider.

1006 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

network operator). Perhaps surprisingly, this very coarse way
of identifying group outliers is quite effective in identifying
real errors in practice, as we show below.

We tried to automatically identify parameter outliers, where
a parameter value is considered an outlier if the value’s fre-
quency is below a threshold. We considered different thresh-
old functions – X% of max frequency, X% of average fre-
quency, etc. — and used an existing technique [28] to identify
a good threshold value by finding the point at which the num-
ber of outliers spikes as X is varied. However, in the cloud
provider networks nearly all parameter outliers that we inves-
tigated using this approach were false positives. The global
nature of the cloud provider networks makes it likely that
there will be many different parameter values, including some
used infrequently. Therefore, our experiments do not identify
parameter outliers for the cloud provider networks. For the
university network, the number of metatemplates and param-
eters was small enough for us to manually identify parameter
outliers and then validate them with the network operators.

6.1 Datacenter Networks
We applied SELFSTARTER to a large collection of production
datacenter networks, totaling tens of thousands of devices and
hundreds of millions of lines of configuration, from a cloud
provider. The datacenters are set up in a folded Clos topology
and run the eBGP routing protocol with private AS numbers,
as described in an RFC [27]. We obtained a snapshot of
device configurations from December 2018.

Ground truth: The configuration files for all network de-
vices are generated automatically from a set of hand-written
templates, which are kept up-to-date as “golden” templates.
The templates are parameterized, and a separate database
maintains the parameter values for each node (e.g., its list
of SNMP monitoring servers). Both the golden templates
and the parameters database are subject to periodic updates.
A software service automatically generates new per-device
“golden” configuration based on these updates and installs
them on the running devices. However, there are constraints
on when and how often it is appropriate to update a device.
For example, a device that is a single point of failure must be
updated only after customers that could be impacted are safely
transitioned. The software service takes these constraints into
account when updating the configurations.

We consider an inconsistent triple to be a true positive if
the configurations of at least one group of nodes that SELF-
STARTER identifies differ from their golden configurations.
Because of the software service that automates configuration
updates, we did not expect to (and indeed did not) find new
errors with SELFSTARTER. Rather, this experiment allows
us to objectively validate SELFSTARTER by comparing its
results with a well-maintained source of ground truth.9

9However, in principle SELFSTARTER can still be useful for this network,
to catch errors in the automation service itself.

Triples: Recall that a triple contains a segment type, role,
and segment name. Since each datacenter network defines
ACLs, prefix-lists, and route-policies, we include all three seg-
ment types in our triples. Each node’s name includes both the
name of the datacenter to which it belongs and its tier within
the datacenter (e.g., top-of-rack); we treat each (datacenter,
tier) pair as a unique role. Finally, for each segment type and
role, we create a triple for each unique segment name of that
type in the role, resulting in more than 20,000 triples.

Segment
Type

Consistent
Triples

Inconsistent Triples
Reported Investigated True positives

ACLs 9700 938 400 400

Prefix Lists 2954 0 - -

Route Policies 11653 230 230 230

Table 2: Datacenter Results

Results: SELFSTARTER identified 1168 group outliers
across the three segment types (Table 2), which is fewer than
5% of all triples. We investigated all 230 of the route-policy
outliers. We randomly selected 400 ACL outliers to inves-
tigate while ensuring that this subset contains at least one
triple for each different segment name that appears in the set
of outliers. All 630 outliers were determined to be true posi-
tives. Specifically, in all cases, at least one of the groups of
routers was correctly following the golden template and the
difference between configurations was due to a configuration
update had been applied to some, but not all, of the nodes
in the same role. As mentioned earlier, updates are delayed
for many reasons, so such differences are expected and are
eventually resolved by the software service.

6.2 Wide Area Network
The WAN we analyzed is one of the largest backbone net-
works in the world; it interconnects North America, South
America, Asia, Europe, Africa, and Oceania. The backbone
consists of hundreds of thousands of kilometers of fiber, hun-
dreds of routers, and millions of lines of router configuration.
The configurations for the routers are stored in a centralized
database, from which we obtained a June 2019 snapshot. All
routers are JunOS-based and use the flat-juniper configuration
language format.

Ground truth: The WAN does not employ explicit config-
uration templates. However, the network operators rely partly
on scripts to manage the network; the templates are implicit
in these scripts. Typically, each script performs one specific
task. As an example, a script configures a set of route policies
and verifies that they are consistent across a set of devices. In
effect, the equivalent of “golden” configurations described for
datacenters do not exist for the wide area. Thus, we asked the
network operators to help classify SELFSTARTER’s outliers
as true/false positives.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1007

Triples: We determined useful network roles using an it-
erative process. We initially divided nodes into roles based
on only their network functionality from their names — edge
routers, border routers, core routers, route reflector routers
and so on. As in the datacenter, we then created one triple for
each unique segment name, per segment type and role.

The initial results using this role scheme contained numer-
ous false positives. Upon consulting a network operator, we
immediately (within minutes) received the feedback that these
roles were too coarse-grained as well as guidance on how to
further refine the roles. The first refinement was to take into
account the operating environment of each node. For example,
two nodes, where one has external peering enabled and the
other does not, should not be considered to be in the same
role. Fortunately, we were able to utilize information in a file,
maintained by the operator, that lists the operating environ-
ment of each node. The second refinement was to take into
account geographic location. Routers have certain special-
izations based on geographical regions in order to meet local
policies such as government-specific privacy requirements.

In the end, the number of routers is only roughly 5× the
number of roles. In retrospect this makes sense for the WAN
due to its global spread. Devices necessarily have many policy
differences across regions, for instance based on local peering
relationships. Though our initial guess of roles was overly
coarse, it was trivial for the operator to immediately identify
the issue and provide refined role information.

The WAN defines ACLs, prefix lists, and route policies.
However, to date we only have feedback from the operators
about SELFSTARTER’s output for prefix lists and route poli-
cies; thus we omit ACLs from the results below.

Segment
Type

Consistent
Triples

Inconsistent Triples
Reported Investigated True positives

Prefix Lists 10042 166 138 7

Route Policies 10969 56 33 33

Table 3: WAN Results

Results: SELFSTARTER identified 222 inconsistent triples
(Table 3), which is ∼1% of all triples. All outliers that were
flagged as true positives were previously unknown and have
since been remediated by the operators. All 33 investigated
triples for route policies were verified as true positives by the
network operators. There were several different root causes.
Interestingly, one class of errors was due to bugs in the au-
tomation scripts. Specifically, a script that checks for the
existence of certain commands in a route policy acciden-
tally did not consider the order of these commands. Since
SELFSTARTER takes order into account, its metatemplate con-
tained multiple groups and hence identified ordering errors
that change the behavior and that the script missed. Another
class of errors, which caused five inconsistent triples, was
due to a spurious community tag being added to some route

announcements in a few routers.
SELFSTARTER was much less effective at finding real er-

rors in prefix lists, with only 7 out of 138 investigated triples
determined to be true positives. In 95 out of 138 triples, the
Juniper command apply-path is used to create a prefix list
by expanding an existing set of addresses defined elsewhere in
the configuration, such as the set of local IPs or NTP servers.
The seven true positives represented cases where there were
inconsistent sets of loopback interfaces defined on different
routers, and required cleanup. For the other 88 cases, the op-
erator informed us that it is expected that every router’s prefix
list will expand to a different set of IPs, and that they can
have different numbers of such addresses. For the remaining
prefix-lists, the operator informed us that those prefix-lists are
locally significant on every router and will always be different.
Since SELFSTARTER creates multiple groups whenever two
segments have different numbers of lines, this led it to report
these spurious inconsistent triples.

On the positive side, it was easy for the operator to quickly
understand SELFSTARTER’s output and identify these cases
as false positives. In fact, the total operator time to classify
all of SELFSTARTER’s results, for both prefix lists and route
policies, was under 30 minutes. Going forward, it would
be simple to allow operators to suppress errors reported for
segments/roles with well-known differences.

6.3 University Network

The university network consists of approximately 1000 de-
vices, including border routers that connect to external ISPs,
core routers that form the backbone, and building routers that
handle connectivity for individual buildings. We obtained a
snapshot from May 2019 of the network configurations.

Ground truth: Configurations in the network were created
using a mix of manual setup and templates. However, even
where templates exist, the configurations are still updated
directly over time to meet evolving policy needs, and the
original templates are not always kept up to date. Therefore,
we asked the network engineers to validate our results.

Triples: Node names include a two-letter abbreviation to
indicate the network role, for example cr for core routers and
br for building routers. We analyzed only the 106 building
routers in the network. This network role was chosen because
it is the most interesting one for our purposes – it is the only
role that contains many segments that are intended to be simi-
lar to one another. Specifically, the role contains six distinct
ACLs that appear in nearly all routers. ACLs account for
more than one third of the lines in these configurations. The
building routers do not contain prefix lists or route policies.

We ran SELFSTARTER with a regular expression for each
ACL rather than an exact name, since they have slightly dif-
ferent names in each router. Specifically, the name of each
router’s version of an ACL includes the router’s associated
building name and the date on which the ACL was created.

1008 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ACL Pattern Number of ACLs
in largest group

Number of ACLs
in other groups

br_aux_mgmt_*_in_* 88 18
br_mgmt_*_in_* 82 24
br_wlan_mgmt_*_in_* 80 24
br_aux_mgmt_*_out_* 84 22
voip_*_in_* 61 22
voip_*_out_* 61 22

Table 4: May 2019 "br" router ACL results.

Results: Table 4 summarizes the results. For each ACL
SELFSTARTER identified one dominant group of nodes that
share a common template, along with one or more smaller
groups of nodes that have a different template. Hence non-
dominant groups potentially indicate misconfigurations.

To date the network engineers have provided feedback
on the first three ACLs in the table. In all three cases the
network engineers have confirmed that the group outliers that
SELFSTARTER identified are indeed misconfigurations: every
ACL that SELFSTARTER placed in a non-majority group has
at least one misconfiguration.

For example, the metatemplate and the groups that SELFS-
TARTER inferred for the first ACL regex in Table 4 was shown
in Figure 1. The 18 ACLs in Groups 2 and 3 include some old
deny lines. Initially, IP spaces 14.10.49.0/24, 14.10.50.0/24,
and 15.8.228.0/20 were allocated for infrastructure manage-
ment; thus access to them was restricted using deny lines
(ACL Lines 3 – 5). However, that allocation changed at some
point to 14.10.0.0/19 and 17.7.240.0/20; thus the intent was
to deny traffic to these new IP spaces (ACL Lines 1 – 2) and
remove the old deny lines. Because it is each department’s
responsibility to update the ACLs for their building routers,
some of the ACLs were not properly updated. The second and
third ACLs in Table 4 exhibited similar misconfigurations, all
of which were confirmed by the network engineers.

The network engineers have templates for these ACLs and
so we manually compared the template that SELFSTARTER
inferred for the dominant group with those templates for the
first three ACLs in Table 4. For the first two ACLs, SELFS-
TARTER’s template matches the network’s hand-written tem-
plates. Specifically, the templates are line-for-line identical,
except that in some cases SELFSTARTER’s template has a
concrete value where the golden template has a parameter.
For example, SELFSTARTER might learn that a particular line
uses IP address 1.2.3.A, since all segments agree on the first
three octet values, but the hand-written template treats the
entire IP address as a parameter.

For the third ACL, SELFSTARTER’s template for the domi-
nant group does not match the network’s template. Specifi-
cally, the network’s template has two additional permit lines
(one based on IP and another on ICMP). The network engi-
neers informed us that this template was indeed stale. This
shows that a possible use case for SELFSTARTER is to auto-

matically identify “template drift”.
Finally, we manually identified three parameter outliers in

the first ACL. Earlier we said that parameter A in line 6 (ACL
Line 6) of the metatemplate in Figure 1(a) was confirmed as a
misconfiguration. We also asked the network engineers about
parameters B and E (line 7). Both of these turned out to be
intentional differences. For example, in the case of parameter
E two building routers required more hosts than 255 and so
were allocated a larger IP space than the other routers.

7 Discussion

Our experience applying SELFSTARTER to real-world net-
works and interacting with the operators has led to several
observations, which we discuss here.

SELFSTARTER assumes that many router configurations
in a network are structurally similar to one another. Our
experiments largely bear out this assumption, since network
operators typically employ configuration templates or com-
mon guidelines to simplify the configuration of groups of
nodes. However, when this assumption does not hold, for
example in the prefix lists of the WAN that we analyzed, then
SELFSTARTER will not be as useful.

Our experimental evaluation indicates that SELFSTARTER
can be useful in different kinds of networks, which are man-
aged in different ways. Even where templates exist, they
can become stale over time as the running configurations
are updated. Even where automation exists, the automation
can be incomplete or itself be a source of errors. Because
SELFSTARTER takes as input only the final per-node configu-
rations, it provides a useful form of redundancy for validating
configurations, regardless of how they were created.

Finally, SELFSTARTER’s structural approach to outlier de-
tection means that it cannot determine the behavioral dif-
ferences between outliers and non-outliers. However, in our
experience a key advantage of SELFSTARTER is that its results
are very easy for operators to understand, precisely because a
metatemplate retains the structure of the original configura-
tion segments. All of the network operators with whom we
interacted were able to quickly decide whether an identified
outlier was a true or false positive.

8 Related Work

To our knowledge, ours is the first technique to automatically
infer templates for network configuration segments. We use
these templates to identify misconfigurations, so we compare
against other techniques for doing so.

Network Verification Network verification for the data
plane (e.g., [6,11,23,24,29,31,39]) and control plane (e.g., [7,
14–16,18]) models the semantics of the network, which allows
them to verify deep behavioral properties. However, they rely
on the user providing a formal specification, and otherwise

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1009

are limited to checking generic properties like the absence
of loops. In contrast, SELFSTARTER leverages the structural
similarity of many router configurations to identify network-
specific errors without a specification, but SELFSTARTER
cannot map these errors to specific undesired behaviors.

Minesweeper [7] can verify functional equivalence of two
router configurations, which could be used to identify out-
liers. However, exact functional equivalence is much too
strong a criterion in general and so would lead to a high false
positive rate and make it harder to spot errors. For example,
partitioning the 88 ACLs of Group 1 from Figure 1, all of
which are correct, by functional equivalence would result in
44 groups, each of size 2. On the plus side, by modeling a
segment’s behavior Minesweeper can safely allow reorder-
ings that SELFSTARTER would spuriously flag, for example
swapping the order of unrelated permit and deny lines.

Outlier Detection for Network Configurations: El-Arini
and Killourhy [12] use a form of Bayesian inference to iden-
tify outlier configuration lines and demonstrate that the ap-
proach can find “lone commands,” lines that only appear once
in the given set of configurations. Le et al. [28] employ a data-
mining algorithm to infer association rules; configurations
that violate the rules are deemed outliers. These approaches
identify misconfigurations in settings of interface definition
and BGP sessions, including BGP route policies.

However, these approaches share two key limitations. First,
they can only find outliers based on exact equivalence. Specif-
ically, neither the approach of El-Arini and Killourhy nor the
inferred association rules of Le et al. can infer configuration
parameters, which is necessary to account for values that dif-
fer in expected ways across devices. Second, neither approach
takes into account the importance of line reorderings within
a configuration segment. Our structured generalization algo-
rithm overcomes both limitations: bipartite matching of lines
induces a natural form of parameterization, and sequence
alignment of blocks enforces ordering constraints.

Mining Configuration Policies: Benson et al. show how
to infer reachability policies for a network data plane [9]. Re-
cently, Birkner et al. show how to infer similar policies that
also take into account the control plane, ensuring that policies
hold even in the presence of failures [10]. These semantic
policies, which pertain to the end-to-end behavior of the net-
work, are orthogonal and complementary to SELFSTARTER’s
structural policies for network configurations.

Benson et al. also introduce metrics and techniques to
gauge the complexity of configurations [8]. Closest to our
work is their technique to infer network roles. Their algorithm
replaces field values with dummy entries — for example, IP
addresses with the string “IPADDRESS” — and then employs
an off-the-shelf clone detection tool [22] to find similar con-
figurations. Our structured generalization is similar in spirit
but provides several refinements necessary for template infer-
ence, including fine-grained support for parameterization and
reordering. However, their work is complementary to ours, as

we require the user to provide network role information.
Diagnosing Misconfigurations: Another line of work fo-

cuses on diagnosing the cause of misconfigurations. For
example, NetPrints [5] does this through a form of decision
tree learning, and PeerPressure [38] does this through a statis-
tical analysis. Unlike SELFSTARTER, these tools start from a
set of known or suspected misconfigurations, which the user
must supply. Further, these tools diagnose misconfigurations
in terms of a set of simple configuration features, while SELF-
STARTER leverages the full structure of the configuration
segments through template inference.

Automatic Differencing: Many algorithms exist for “diff-
ing,” for example, text comparison [32], clone detection [21,
22], and sequence alignment [36]. Our structured general-
ization algorithm combines some of these techniques in a
novel manner, based on our domain requirements. We em-
ploy bipartite matching at the line level to support permutation
and parameterization, but we introduce the block abstraction
and perform sequence alignment on blocks to restrict certain
reorderings while admitting insertions and deletions.

9 Conclusion

We presented an approach to identify misconfigurations in
complex configuration segments, such as ACLs and route
policies, without a specification. Such segments are typically
intended to be similar across nodes playing the same role, yet
they often have many intentional differences. We address this
challenge by automatically inferring templates, modeling the
(likely) intentional differences as variations within a template
and the (likely) erroneous differences as variations across
templates. Our structured generalization algorithm employs a
novel two-level matching technique to allow controlled forms
of parameterization and reordering within templates. To our
knowledge this is the first approach to automatic template
inference for network configuration segments.

Unlike the majority of work in network verification, which
reasons about the semantics of networks, SELFSTARTER’s
analysis instead reasons about the structure of their configu-
rations. While SELFSTARTER by design cannot understand
packet behavior, it makes up for this lack by providing concise,
actionable feedback directly in terms of the configurations.
As a result, it has helped operators find and fix previously
unknown network misconfigurations in three very different
types of networks: datacenter, WAN, and campus.

Acknowledgments

Thanks to the NSDI reviewers and our shepherd Laurent Van-
bever for their insightful comments, to the anonymous net-
work operators for their feedback on SELFSTARTER’s results,
and to Shuang Zhang for help with SELFSTARTER’s output vi-
sualization. This work was partially supported by NSF grants
CNS-1704336 and CNS-1901510.

1010 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Cisco blog | bgpmon.
https://bgpmon.net/blog/.

[2] Hyperscale cloud reliability and the art of organic
collaboration.
https://www.microsoft.com/en-us/research/
blog/hyperscale-cloud-reliability-and-the-
art-of-organic-collaboration/.

[3] Intent-based networking in the data center: Cisco vs.
juniper.
https://www.datacenterknowledge.com/
networks/intent-based-networking-data-
center-cisco-vs-juniper.

[4] Intent-based networking startups.
https://www.datacenterknowledge.com/
networks/4-intent-based-networking-
startups-innovating-disrupt-data-center-
network.

[5] Bhavish Agarwal, Ranjita Bhagwan, Tathagata Das, Sid-
dharth Eswaran, Venkata N. Padmanabhan, and Geof-
frey M. Voelker. Netprints: Diagnosing home network
misconfigurations using shared knowledge. In Pro-
ceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2009, April
22-24, 2009, Boston, MA, USA, pages 349–364, 2009.

[6] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Config-
uration analysis and verification of federated openflow
infrastructures. In Proceedings of the 3rd ACM Work-
shop on Assurable and Usable Security Configuration,
SafeConfig ’10, pages 37–44, New York, NY, USA,
2010. ACM.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 155–168, New York, NY, USA,
2017. ACM.

[8] Theophilus Benson, Aditya Akella, and David Maltz.
Unraveling the complexity of network management. In
Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’09,
pages 335–348, Berkeley, CA, USA, 2009. USENIX
Association.

[9] Theophilus Benson, Aditya Akella, and David A. Maltz.
Mining policies from enterprise network configuration.
In Proceedings of the 9th ACM SIGCOMM Conference
on Internet Measurement, IMC ’09, pages 136–142,
New York, NY, USA, 2009. ACM.

[10] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Van-
bever, and Martin Vechev. Config2spec: Mining net-
work specifications from network configurations. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association,
2020.

[11] Nikolaj Bjørner, Garvit Juniwal, Ratul Mahajan, San-
jit A. Seshia, and George Varghese. ddnf: An efficient
data structure for header spaces. In Roderick Bloem
and Eli Arbel, editors, Hardware and Software: Verifica-
tion and Testing - 12th International Haifa Verification
Conference, HVC 2016, Haifa, Israel, November 14-17,
2016, Proceedings, volume 10028 of Lecture Notes in
Computer Science, pages 49–64, 2016.

[12] Khalid El-arini. Bayesian detection of router configu-
ration anomalies. In In Sigcomm Workshop on Mining
Network Data, pages 221–222. ACM, 2005.

[13] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code.
In Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, SOSP ’01, pages 57–72,
New York, NY, USA, 2001. ACM.

[14] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Maha-
jan, Todd Millstein, Vyas Sekar, and George Varghese.
Efficient network reachability analysis using a succinct
control plane representation. In 12th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 16), pages 217–232, Savannah, GA, 2016.
USENIX Association.

[15] Nick Feamster and Hari Balakrishnan. Detecting bgp
configuration faults with static analysis. In Proceedings
of the 2Nd Conference on Symposium on Networked Sys-
tems Design & Implementation - Volume 2, NSDI’05,
pages 43–56, Berkeley, CA, USA, 2005. USENIX As-
sociation.

[16] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, Oakland, CA, 2015. USENIX Association.

[17] Fortune. American airlines network outage delays
flights nationwide.
http://fortune.com/2018/07/29/american-
airlines-network-outage/.

[18] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast control plane analysis
using an abstract representation. In Proceedings of the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1011

https://bgpmon.net/blog/
https://www.microsoft.com/en-us/research/blog/hyperscale-cloud-reliability-and-the-art-of-organic-collaboration/
https://www.microsoft.com/en-us/research/blog/hyperscale-cloud-reliability-and-the-art-of-organic-collaboration/
https://www.microsoft.com/en-us/research/blog/hyperscale-cloud-reliability-and-the-art-of-organic-collaboration/
https://www.datacenterknowledge.com/networks/intent-based-networking-data-center-cisco-vs-juniper
https://www.datacenterknowledge.com/networks/intent-based-networking-data-center-cisco-vs-juniper
https://www.datacenterknowledge.com/networks/intent-based-networking-data-center-cisco-vs-juniper
https://www.datacenterknowledge.com/networks/4-intent-based-networking-startups-innovating-disrupt-data-center-network
https://www.datacenterknowledge.com/networks/4-intent-based-networking-startups-innovating-disrupt-data-center-network
https://www.datacenterknowledge.com/networks/4-intent-based-networking-startups-innovating-disrupt-data-center-network
https://www.datacenterknowledge.com/networks/4-intent-based-networking-startups-innovating-disrupt-data-center-network
http://fortune.com/2018/07/29/american-airlines-network-outage/
http://fortune.com/2018/07/29/american-airlines-network-outage/

2016 ACM SIGCOMM Conference, SIGCOMM ’16,
pages 300–313, New York, NY, USA, 2016. ACM.

[19] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: Mea-
surement, analysis, and implications. In Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM
’11, pages 350–361, New York, NY, USA, 2011. ACM.

[20] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at scale.
In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, pages 200–213,
New York, NY, USA, 2019. ACM.

[21] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of the
29th International Conference on Software Engineering,
ICSE ’07, pages 96–105, Washington, DC, USA, 2007.
IEEE Computer Society.

[22] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone de-
tection system for large scale source code. IEEE Trans.
Softw. Eng., 28(7):654–670, July 2002.

[23] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion, NSDI’12, pages 9–9, Berkeley, CA, USA, 2012.
USENIX Association.

[24] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. Veriflow: Verifying network-wide
invariants in real time. SIGCOMM Comput. Commun.
Rev., 42(4):467–472, September 2012.

[25] H. W. Kuhn. Variants of the hungarian method for
assignment problems. Naval Research Logistics Quar-
terly, 3(4):253–258, 1956.

[26] H. W. Kuhn and Bryn Yaw. The hungarian method
for the assignment problem. Naval Res. Logist. Quart,
pages 83–97, 1955.

[27] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP
for routing in large-scale data centers. Internet draft,
2015.

[28] Franck Le, Sihyung Lee, Tina Wong, Hyong Kim, and
Darrell Newcomb. Detecting network-wide and router-
specific misconfigurations through data mining. Net-
working, IEEE/ACM Transactions on, 17:66 – 79, 03
2009.

[29] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid,
Karthick Jayaraman, and George Varghese. Checking
beliefs in dynamic networks. In 12th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 15), pages 499–512, Oakland, CA, 2015.
USENIX Association.

[30] Ratul Mahajan, David Wetherall, and Tom Anderson.
Understanding bgp misconfiguration. In Proceedings
of the 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cations, SIGCOMM ’02, pages 3–16, New York, NY,
USA, 2002. ACM.

[31] Haohui Mai, Ahmed Khurshid, Rachit Agarwal,
Matthew Caesar, P. Brighten Godfrey, and Samuel Tal-
madge King. Debugging the data plane with anteater. In
Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, pages 290–301, New York, NY, USA,
2011. ACM.

[32] Meld. Compare files, directories and working copies.
https://git.gnome.org/browse/meld/tag/?h=
release-0_5_1.

[33] James Munkres. Algorithms for the assignment and
transportation problems, 1957.

[34] GD Plotkin. A note on inductive generalization, ma-
chine intelligence , editors b. Meltzer, DI lichine, Uni-
versity PresB, Edinburgh, Vol. 5:153–163, 1970.

[35] The Register. How four rotten packets broke centu-
rylink’s network for 37 hours, knackering 911 calls,
voip, broadband.
https://www.theregister.co.uk/2019/08/20/
centurylink_outage_report_fcc/.

[36] T.F. Smith and M.S. Waterman. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147(1):195 – 197, 1981.

[37] Ars Technica. Google goes down after major bgp
mishap routes traffic through china.
https://arstechnica.com/information-
technology/2018/11/major-bgp-mishap-takes-
down-google-as-traffic-improperly-travels-
to-china/.

[38] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang,
and Yi-Min Wang. Automatic misconfiguration trou-
bleshooting with peerpressure. In 6th Symposium on

1012 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://git.gnome.org/browse/meld/tag/?h=release-0_5_1
https://git.gnome.org/browse/meld/tag/?h=release-0_5_1
https://www.theregister.co.uk/2019/08/20/centurylink_outage_report_fcc/
https://www.theregister.co.uk/2019/08/20/centurylink_outage_report_fcc/
https://arstechnica.com/information-technology/2018/11/major-bgp-mishap-takes-down-google-as-traffic-improperly-travels-to-china/
https://arstechnica.com/information-technology/2018/11/major-bgp-mishap-takes-down-google-as-traffic-improperly-travels-to-china/
https://arstechnica.com/information-technology/2018/11/major-bgp-mishap-takes-down-google-as-traffic-improperly-travels-to-china/
https://arstechnica.com/information-technology/2018/11/major-bgp-mishap-takes-down-google-as-traffic-improperly-travels-to-china/

Operating System Design and Implementation (OSDI
2004), San Francisco, California, USA, December 6-8,
2004, pages 245–258, 2004.

[39] Hongkun Yang and Simon S. Lam. Real-time verifi-
cation of network properties using atomic predicates.

IEEE/ACM Trans. Netw., 24(2):887–900, April 2016.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1013

	Introduction
	Using SelfStarter
	Structured Generalization
	Challenges
	Algorithm
	Instantiation for ACLs and Prefix Lists
	Instantiation for Route Policies

	A Templating Example
	[id=Todd]Implementation
	Evaluation
	Datacenter Networks
	Wide Area Network
	University Network

	Discussion
	Related Work
	Conclusion

