
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

SCALE: Automatically Finding RFC Compliance Bugs
in DNS Nameservers

Siva Kesava Reddy Kakarla, University of California, Los Angeles;
Ryan Beckett, Microsoft; Todd Millstein, University of California, Los Angeles,

and Intentionet; George Varghese, University of California, Los Angeles
https://www.usenix.org/conference/nsdi22/presentation/kakarla

SCALE: Automatically Finding RFC Compliance Bugs in DNS Nameservers

Siva Kesava Reddy Kakarla1 Ryan Beckett2 Todd Millstein1,3 George Varghese1

1University of California, Los Angeles 2Microsoft 3Intentionet

Abstract
The Domain Name System (DNS) has intricate features that
interact in subtle ways. Bugs in DNS implementations can
lead to incorrect or implementation-dependent behavior, secu-
rity vulnerabilities, and more. We introduce the first approach
for finding RFC compliance errors in DNS nameserver im-
plementations, via automatic test generation. Our SCALE
(Small-scope Constraint-driven Automated Logical Execu-
tion) approach jointly generates zone files and corresponding
queries to cover RFC behaviors specified by an executable
model of DNS resolution. We have built a tool called FERRET
based on this approach and applied it to test 8 open-source DNS
implementations, including popular implementations such as
BIND, POWERDNS, KNOT, and NSD. FERRET generated over
13.5K test cases, of which 62% resulted in some difference
among implementations. We identified and reported 30 new
unique bugs from these failed test cases, including at least
one bug in every implementation, of which 20 have already
been fixed. Many of these bugs existed in even the most popu-
lar DNS implementations, including a critical vulnerability in
BIND that attackers could easily exploit to crash DNS resolvers
and nameservers remotely.

1 Introduction
The Domain Name System (DNS) plays a central role in
today’s Internet, as it allows users to connect to online
services through user-friendly domain names in place of
machine-friendly IP addresses. Organizations across the
Internet run DNS nameservers, which use DNS configurations
called zone files to determine how to handle each query, either
returning an IP address, rewriting the query to another one,
or delegating the responsibility to another nameserver. There
are many popular nameserver implementations of the DNS
protocol in the wild, both open-source [21, 23, 25, 76] and in
public or private clouds [2, 39, 85, 97].

Over time DNS has evolved into a complex and intricate
protocol, spread across numerous RFCs [41, 80, 86, 96]. It is
difficult to write an efficient, high-throughput, multithreaded
implementation that is also bug-free and compliant with these
RFC specifications. As a result, nameserver implementations
frequently suffer from incorrect or implementation-specific
behavior that causes outages [34, 103, 106], security
vulnerabilities [74, 94], and more [15, 19, 22].

This paper presents the first approach for identifying RFC
compliance errors in DNS nameserver implementations, by
automatically generating test cases that cover a wide range
of RFC behaviors. The key technical challenge is the fact
that a DNS test case consists of both a query and a zone file,
which is a collection of resource records that specify how
queries should be handled. Zone files are highly structured
objects with various syntactic and semantic well-formedness
requirements, and the query must be related to the zone file
for the test even to reach the core query resolution logic.

Existing standard automated test generation approaches are
not suitable for our needs, as illustrated in the top of Figure 1.
Fuzz testing is scalable but has well-known challenges in
navigating complex semantic requirements and dependen-
cies [13, 36], which are necessary to generate behavioral tests
for DNS. As a result, fuzzers for DNS only generate queries
and hence are used only to find parsing errors [10, 32, 89, 99].
Symbolic execution [72] can, in principle, generate DNS tests
that achieve high code coverage but, in practice, suffers from
the well-known problem of “path explosion” [9, 13, 36] that
limits scalability and coverage. As a result, symbolic execution
has only been used to identify generic errors like memory leaks
in individual functions within nameserver implementations,
again avoiding the need to generate zone files [93].

Our approach to automated testing for DNS nameservers,
which we call SCALE (Small-scope Constraint-driven
Automated Logical Execution), jointly generates zone files
and the corresponding queries, does so in a way that is
targeted toward covering many different RFC behaviors, and
is applicable to black-box DNS nameserver implementations.
The key insight underlying SCALE is that we can use the
existing RFCs to define a model of the logical behaviors of
the DNS resolution process and then use this model to guide
test generation. Specifically, we have created an executable
version of a recent formal semantics of DNS [71], which we
then symbolically execute to generate tests for black-box DNS
nameservers — each test consisting of a well-formed zone
file and a query that together cause execution to explore a
particular RFC behavior. Intuitively, tests that cover a wide
variety of behaviors in our executable model will also cover
a wide variety of behaviors in DNS nameservers since they
have the same goal, namely to implement the RFCs.

Symbolic execution of our logical model is still fundamen-
tally unscalable — there are an unbounded number of possible

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 307

Figure 1: Overview of different automated testing approaches.
Tested implementation paths are shown in red. (a) Fuzz testing
is scalable but is often unable to navigate complex input
requirements. (b) Symbolic execution can solve for input
conditions but suffers from path explosion and has difficulty
with complex data structures and program logic, and will thus
only typically explore a small subset of possible program paths.
(c) SCALE uses a logical model of the DNS RFCs to guide
symbolic search toward many different logical behaviors.

execution paths, they grow exponentially in the size of the zone
file, and expensive constraint solvers must be used to generate a
test case for each path. We therefore bound the generated zone
files to contain a very small number of resource records and
short domain names — a maximum of 4 for each of these in our
experiments, which is much smaller than real-world zone files.
However, we provide experimental evidence of the existence of
a small-scope property [43], meaning that many interesting be-
haviors can be covered with small tests. First, each return point
in our logical model can be reached with a test where the length
of domain names and the number of records in the zone file is at
most 3. Each return point represents a distinct RFC-specified
scenario for DNS resolution (e.g., a particular flavor of query
rewrite). Second, while increasing this constant from 2 through
4 increased the number of errors that our tool identified, no
new errors were found in a sample of paths that required size
5. This finding makes sense because, while zone files can
contain a large number of records, the number of records that
are relevant to any particular query tends to be small.

We have used the SCALE approach as the basis for a tool
called FERRET1 for automated testing of DNS nameserver
implementations (Figure 2). FERRET generates tests using
our logical model, which we have implemented in a modeling
language called Zen [4] that has built-in support for symbolic
execution. FERRET then performs differential testing by run-
ning these tests on multiple DNS nameserver implementations
and comparing their results to one another. In this way FER-
RET can identify RFC violations, crashes, as well as situations
where the RFCs may be ambiguous or underspecified, leading

1FERRET: https://github.com/dns-groot/Ferret

Test GeneratorRFC Model

NSDBIND ...

Response Grouping

✓ Fingerprintingsingle group >1 group

Figure 2: FERRET system architecture.

to implementation-dependent behavior. Because DNS imple-
menters strive for behavioral consistency among their imple-
mentations [92], any test that produces divergent results among
the implementations represents a likely error. However, there
can be orders-of-magnitude fewer root causes than divergent
tests, so as a final step we provide a simple but effective tech-
nique to help users with bug deduplication. We create a hybrid
fingerprint for each test, which combines information from
the test’s path in the Zen model with the results of differential
testing, and then group tests by fingerprint for user inspection.

Using FERRET, in just a few hours we generated over
12.5K valid test cases2 with a maximum zone-file size of 4
records. Running these tests on 8 different open-source DNS
nameserver implementations, we found that the implemen-
tations’ behaviors only completely agreed on 35% of the tests.
Our fingerprinting technique reduced the remaining cases to
roughly 75 groups. Because our executable model includes a
specification of the well-formedness conditions for zone files,
we also leveraged Zen to systematically generate zone files
that violate one of these conditions. We generated 900 invalid
zone files of which 184 resulted in some difference among
implementations. Inspecting tests from each fingerprinted
group resulted in the discovery of 30 unique bugs across the
different implementations. Developers have confirmed all of
them as actual bugs and fixed 20 of them, at the time of writing.
The most severe bug FERRET found was a subtle combination
of zone file and query that an attacker could easily use to crash
both BIND nameservers and resolvers remotely. We engaged
in a secure disclosure process, after which the developers fixed
the issue and then publicly disclosed the vulnerability, through
a CVE (CVE-2021-25215) [26, 38] rated with high-severity.

Contributions: This paper’s contributions are:
• The first automated approach to identify RFC violations

in black-box DNS nameservers. A unique feature of our
approach, SCALE, is the joint generation of zone files and
queries to produce high-coverage behavioral tests.

• An implementation of our approach in FERRET that
combines SCALE with differential testing.

• A novel fingerprinting approach for bug deduplication that
takes advantage of our RFC model to help triage bugs.

• An evaluation from testing 8 different open-source DNS
nameserver implementations with tests generated by FER-
2Test cases: https://github.com/dns-groot/FerretDataset

308 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/dns-groot/Ferret
https://github.com/dns-groot/FerretDataset

DNS root nameservers

Nameservers of org.

Nameservers of usenix.org.

usenix.org. 1

Go to nameservers for org.

2

3

Go to nameservers for usenix.org.

4

5

623.185.0.4

DNS Resolver

usenix.org.

usenix.org.

Figure 3: The resolution process for the domain name
usenix.org (with no caching).

RET consisting of over 13.5K zone files, which resulted in
the discovery of 30 new unique bugs and no false positives.

2 Background And Motivation

In this section, we first give a brief overview of DNS and then
motivate FERRET through two previously unknown errors that
it found in the popular BIND software for DNS [23].

2.1 Overview of DNS
The Domain Name System (DNS) is the phone book of the
Internet. Its primary role is to translate domain names (like
usenix.org) into various pieces of information, IP addresses
being the most common. A domain name is represented as
a sequence of labels joined by the . character. These labels
form a tree-like hierarchy with the root as . and org as a child
of it and so on. Each label at any level in the hierarchy can
contain information, and the user obtains that information by
querying the domain name formed by joining the labels from
that node to the root. Data is stored as DNS resource records
where each record has a domain (owner) name, a type for its
information, and the content, among other things.

The namespace database tree is divided into a large number
of zones. A zone is a collection of records that share a common
end domain name. For example, the usenix.org zone has
only records ending with usenix.org. All the resource
records of a zone are available to the user through a set of
authoritative nameservers, which are in turn identified by a
domain name. For example, the usenix.org zone is available
from servers like dns1.easydns.com, dns2.easydns.net
and dns3.easydns.ca. The same zone is served by multiple
servers to ensure redundancy and availability.

To resolve a domain name like usenix.org to its IP
address, a client will traverse the tree from one of the root
nameservers. The root nameserver checks its local zone
file and either provides the IP record or returns a set of
authoritative nameservers to ask instead. The client continues

Example Record Description
a.exm.org. A 1.2.3.1 IPv4 record
*.exm.org. AAAA 1:db8::2:1 Wildcard IPv6 record
s.exm.org. NS ns.dns.com. Delegation record
c.exm.org. DNAME cs.org. Domain redirection
w.exm.org. CNAME a.exm.org. Canonical name

Table 1: Examples of common DNS record types.

by querying the new set of nameservers either until the query
is resolved or gets a non-existent domain name error. The
process or the software that performs this traversal on the
client side is called a resolver. The resolution process for the
domain usenix.org is shown in Figure 3.

A nameserver can serve multiple zones. When a query
comes to the nameserver, it first checks whether the query ends
with any of the zone domains; otherwise, it sends a refusal
message to the resolver. After picking a zone, the nameserver
will look up the query name’s closest matching records. It then
creates a response based on the query type and the records se-
lected. DNS supports many record types, including records for
IP addresses, pointers to other records, domain aliases, delega-
tion records, and more. Table 1 shows a few example records.

2.2 Finding DNS Errors with FERRET

The goal of FERRET is to automatically generate high-
coverage query and zone file inputs to find behavioral errors
in DNS nameserver implementations. In this subsection
we illustrate both the challenges in doing so and FERRET’s
capabilities through two example errors that it automatically
found in BIND.

Bug #1: BIND sibling glue records bug. FERRET
generated the following test case, which identified a previously
unknown performance bug in BIND [47].3

campus.edu. SOA ...
foo.campus.edu. NS ns1.campus.edu.
ns1.campus.edu. A 1.1.1.1

Query: ⟨anything.foo.campus.edu., A⟩

In this test case, the query matches the NS record in the
zone file, which delegates the query to another nameserver,
ns1.campus.edu. However, that nameserver happens to
be a sibling of foo.campus.edu (as they are both directly
under campus.edu), and the zone file contains an A record,
called a glue record [41], for the nameserver’s IP address.
NSD, KNOT, and POWERDNS correctly return the NS record
along with the glue record, avoiding extra round-trips to
determine the nameserver’s IP address, while BIND returns
only the NS record. Returning the sibling glue record is not
compulsory, but our test case exposed two unrelated errors
that can negatively affect the performance of many queries.

3Note that we have renamed the labels for all the example bugs for clarity.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 309

After we filed the issue the BIND developers confirmed
the bug saying, “This report turns out to be very interesting..."
Briefly, BIND uses a “glue cache” that had two bugs. First,
if the cache lookup fails, then glue records are supposed to
be searched for in the zone file, but this was not happening.
Second, glue records for siblings domain nameservers were
accidentally never searched for at all.

This example illustrates the challenges of identifying
nameserver behavior errors. Even though the zone file has
only a few records, they have complex dependencies. First,
there must be a delegation of the query to another nameserver.
Second, that nameserver must be in the same zone. Third,
that nameserver must be a sibling domain. Fourth, there must
be a glue record for that domain in the zone. Given these
dependencies, it is understandable that prior testing techniques
did not uncover these bugs. Further, by comparing the outputs
from multiple implementations, FERRET is able to identify
this test case as potentially buggy behavior despite receiving
a valid response from BIND.

Bug #2: BIND crash. As another, more dire example,
consider the following zone file that FERRET generated. The
zone file is invalid due to having two identical records, but
BIND, NSD, and KNOT accept the zone file and make it valid
by ignoring the duplicate record.

attack.com. SOA ...
attack.com. NS ns1.outside.com.
attack.com. NS ns1.outside.com.

host.attack.com. DNAME com.

Query: ⟨host.attack.host.attack.com., DNAME⟩

FERRET generated multiple queries for this zone file (§ 3.6)
and the one showed above caused BIND to crash.

In this test case, the DNAME record is applied to rewrite any
queries ending with host.attack.com to end with just com, so
the query that FERRET generated is rewritten to the new query
host.attack.com. The nameservers add the DNAME record
and rewritten query to the response before resolving the new
query. The new query exactly matches the same DNAME record,
so implementations are expected to return the current response.
All implementations except BIND behaved as expected. BIND
did not respond, and the query timed out. Inspecting the logs,
we found that the server crashed with an assertion failure due to
an attempt to add the same DNAME record to the response twice.

This error constitutes a critical security vulnerability. We
next describe two scenarios to show how this failed assertion
check can be exploited remotely by an attacker.

Scenario 1 - Attack on a DNS hosting service that
uses Bind: DNS hosting services using BIND’s authoritative
nameserver implementation (e.g., Dyn [42]) are vulnerable
to this attack. An attacker can upload the above zone file to
the authoritative server instances through the hosting service.
Then, when the above query is requested, the server instances
will crash as shown in Figure 4(a). Since a server instance

DNS Hosting
Service
E.g., Dyn, Infoblox

Attacker

Host attack.com.
zone file

1

2 Query for
<host.attack.host.a
ttack.com., DNAME>

Crashes Authoritative
nameserver instances

3

(a) Attack on a DNS hosting service using Bind

𝑞1: <host.attack.com.,
DNAME>

Attacker

Bind Resolver

attack.com. zone file
Authoritative nameserver
(under attacker control)

1

2
𝑞1

3
DNAME
record

5
DNAME record
as response

4
cache
record𝑞2: <host.attack.ho

st.attack.com.,
DNAME>

6

7

Resolver crashes

(b) Attack on a public Bind DNS Resolver

Figure 4: DNAME attack targeting the DNS hosting services (a)
and the public BIND based recursive resolvers (b).

will generally be serving zone files from multiple customers,
such a crash will take down the zones for all customers hosted
at that nameserver. This provides a method for attackers to
trivially and remotely initiate a denial of service attack against
customers hosted by such a service.

Scenario 2 - Attack on a public Bind DNS resolver:
In this second scenario, the attacker can crash any public DNS
resolver based on BIND, thereby constituting, as stated by the
BIND security team, an “easily-weaponized denial-of-service
vector.” As illustrated in Figure 4(b), the attacker purchases,
registers, and controls the attack.com zone and its author-
itative servers. The attacker then simply requests the DNAME
record from a public recursive resolver running BIND, which
attempts to fetch the result from the attacker’s authoritative
server. This record is cached, and then the test query is
sent to the resolver. The resolver uses the cached DNAME

record and ultimately crashes as described earlier. In some
estimates, BIND accounts for over half of all DNS resolvers in
use [75], which means that attackers could effectively initiate
a simple distributed denial of service (DDoS) attack against
the numerous ISPs and public resolvers available to end users.

Disclosure: After discovering the DNAME attack, we
initiated a responsible disclosure procedure with the BIND
maintainers. Understanding the attack severity, they requested
that we keep the issue confidential until they worked through
their process to patch and then disclose the bug to the relevant
parties in a controlled manner. BIND released a Common
Vulnerabilities and Exposure (CVE-2021-25215) [26, 38],
with a “high severity” rating and asked developers and users
to upgrade to the patched version. The attack affected all
maintained BIND versions, which in turn affected RHEL,
Slackware, Ubuntu, and Infoblox.

310 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SELECTBESTRECORDS

ZoneQuery

EXACTMATCH
YES NO

AUTHORITATIVE

EXACTTYPE E4

CNAMETYPEE1

E2 E3

WILDCARDMATCH

EXACTTYPE

W1 CNAMETYPE

W2 W3

DNAMETYPE

D1 REFERRAL

R1 R2

Figure 5: Abstract representation of the Authoritative DNS decision tree used to respond to a user query.

3 Methodology

In this section we overview our methodology for generating
high-coverage tests for DNS nameserver implementations and
discuss how we address several technical challenges.

3.1 SCALE Approach
As illustrated by the examples in the previous section, the
inputs to a DNS nameserver — a query and a zone file
containing a set of records — are highly structured. Further,
records can be of many different types and have many different
kinds of dependencies among them. Therefore, an effective
approach to automatically identifying RFC violations must be
able to generate valid inputs that meet the required structural
and semantic constraints of the domain, and it must also be able
to explore different combinations of record types and features
in a systematic way. To solve this joint generation problem, our
approach, SCALE (Small-scope Constraint-driven Automated
Logical Execution) leverages a specification of the DNS
nameserver logic to drive test generation. Specifically, we
have created an executable version of an existing DNS specifi-
cation [71] and generate tests through symbolic execution [72]
on this executable specification. Symbolic execution is a
static analysis technique that enumerates execution paths in a
program and uses automated constraint solvers to produce an
input that will take each enumerated path, thereby generating
tests that cover many different program behaviors.

While the end-to-end behavior of a DNS query lookup
can require contacting many nameservers, we employ a
compositional approach that only generates tests for a single
nameserver in isolation. Because our formal model considers
the space of all inputs to the nameserver that could be
produced by the rest of the system, and because the “next step”
delegation of the resolution process is captured in the output
at a single nameserver, this approach still allows us to generate
tests for all behaviors of the end-to-end DNS. In other words,
any implementation bug that exists in a DNS nameserver

implementation can be found using our approach. In general,
a downside of compositional testing is that it can lead to false
positives if the tester considers input states that are, in reality,
unreachable with respect to the rest of the system. However,
in the case of DNS, nameservers keep no internal state — the
response they provide is based only on the supplied query and
configuration. This stateless nature implies that compositional
testing will not incur any false positives.

Hence our formal semantics focuses on query lookup at
a single nameserver, which we model as a stateless function
that takes a user query and a zone file and produces a DNS
response. Figure 5 shows an abstract view of this function.
Given the input query and zone, DNS will first select the
closest matching records in the zone for the query using the
SELECTBESTRECORDS function and then follow the decision
logic laid out in the figure using these records. Each leaf
node represents a unique case in the DNS. For example, the
tree shows four different cases of exact matches, labelled
E1 through E4. Symbolic execution of our query-lookup
function generates inputs that drive the function down different
execution paths, thereby enabling us to systematically explore
the space of DNS behaviors and feature interactions.
Example: Consider the path in Figure 5 to the leaf labelled
R1. In order to reach that leaf, the selected records must not
contain one with either an exact match or a wildcard match on
the query domain name. Further, there should not be a DNAME
match but should be one of type NS (REFERRAL). Finally,
while not shown in the figure, when preparing a response to
the query the function will also search for a glue record if the
NS target is in the same zone. Solving all of these constraints
caused symbolic execution to automatically generate the first
test case shown in § 2.2, which identified two errors in BIND.

3.2 An Executable Model of DNS
We have created an implementation of the formal semantics of
query lookup [71] as a program in a modeling language called
Zen [4], a domain-specific language (DSL) embedded in C#.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 311

1 Zen<Response> QueryLookup(
2 Zen<Query> q,
3 Zen<Zone> z)
4 {
5 var records = SelectBestRecords(q, z);
6 var rname = records.At(0).Value().Name();
7 var types = records.Select(r => r.Type());
8
9 return If(

10 rname == q.Name(),
11 ExactMatch(records, q, z),
12 If(
13 IsWildcardMatch(q.Name(), rname),
14 WildcardMatch(records, q, z),
15 If(
16 types.Any(t => t == RType.DNAME),
17 Rewrite(records, q),
18 If(
19 And(types.Any(t => t == RType.NS),
20 Not(types.Any(t => t == RType.SOA))),
21 Response(Tag.R1,
22 Delegation(records, z), Null<Query>()),
23 Response(Tag.R2, empty, Null<Query>())
24))));
25 }

Figure 6: Record lookup model in C# using Zen.

To illustrate this approach, we show several components of
our model. Figure 6 shows the model’s main query-lookup
function, as depicted in Figure 5. The function first selects
the best records (Line 5) and then tests if the query domain
name is equal to the records’ domain name (Line 10). If
so, then this is an exact match and the model calls out to a
helper function to specifically handle the ExactMatch subcase
(Line 11). Similarly, if the query domain name is a wildcard
match for the record domain name (Line 13), then we invoke
the WildcardMatch subcase (Line 14). We show the imple-
mentation of wildcard matching in Figure 7. This function
implements the case where the best matching record is a wild-
card, properly handles interactions with CNAME records, and
synthesizes the correct records for use in the resolver cache.

Our complete executable model consists of 520 lines of C#
code. The model can also easily extend to new DNS RFCs that
would be added in the future. Similarly, if an organization has
a particular way of resolving RFC ambiguities or purposely
deviates from the RFCs in specific ways, the organization can
modify the logical model to reflect that intent.

We chose to implement our formal model in Zen because
it has built-in support for symbolic execution. In Zen, certain
inputs can be marked as symbolic, and the tool will then
leverage SMT solvers [27] to produce concrete values for
these inputs that drive the program down different execution
paths. In our code examples, the Zen<T> type for inputs has
the effect of marking them as symbolic. The tests produced
by symbolic execution can then be used to test any DNS
nameserver implementation. However, making symbolic
execution effective required us to address several challenges,
which we describe in the rest of this section.

26 Zen<Response> WildcardMatch(
27 Zen<IList<ResourceRecord>> rrs,
28 Zen<Query> q,
29 Zen<Zone> z)
30 {
31 var exact = rrs.Where(r => r.Type() == q.Type());
32 var record = rrs.At(0).Value();
33 var newQuery = Query(record.RData(), q.Type());
34 var exactSyn = RecordSynthesis(exact, q.Name());
35 var cnameSyn = RecordSynthesis(rrs, q.Name());
36
37 return If(
38 exact.Length() > 0,
39 Response(Tag.W1, exactSyn, Null<Query>()),
40 If(
41 rrs.Any(r => r.Type() == RType.CNAME),
42 Response(Tag.W2, cnameSyn, Some(newQuery)),
43 Response(Tag.W3, empty, Null<Query>())
44));
45 }

Figure 7: Wildcard match model in C# using Zen.

3.3 Generating Valid Zone Files
The first challenge that we encountered is that zone files
must satisfy several constraints in order to be considered
well-formed. For instance, if there is a DNAME record in a
zone file for math.uni.edu, then no other records below this
domain name may exist, for any record type (e.g., an A record
for fun.math.uni.edu is not allowed). The DNS RFCs define
many such constraints as a way to eliminate ambiguous or
useless zones, as shown in Table 2. Naively performing
symbolic execution will produce many zone files that are
not well formed. Further, DNS implementations typically
preprocess zone files to reject ill-formed zones, thereby failing
to test the intended execution path of the query lookup logic.

Fortunately, our SCALE approach admits a natural solution
to this problem. We have formalized all of the DNS zone
validity conditions as predicates in Zen. Whenever Zen’s
symbolic execution engine produces a constraint representing
the conditions under which the query lookup function takes
a particular execution path, we conjoin these predicates to that
constraint before Zen passes it off to an automated constraint
solver. In this way we ensure that all test cases will have
well-formed zone files by construction.

3.4 Data Representation
In our Zen model, we represent zone files as a list of resource
records, where each resource record contains a domain
name, record type, and data fields. We represent user queries
similarly as consisting of a domain name and a query type.
Record and query types are represented using enums, which
Zen translates to integer values.

One challenging decision we ran into was how best to repre-
sent and model domain names, for both zone records and record
data, in a manner that permits fully automatic and scalable
analysis. For instance, a natural way to encode domain names

312 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Validity Condition RFC Document
i. All records should be unique (there should be no duplicates). 2181 [28]

ii. A zone file should contain exactly one SOA record. 1035 [87]
iii. The zone domain should be prefix to all the resource records domain name. 1034 [86]
iv. If there is a CNAME type then no other type can exist and only one CNAME can exist for a domain name. 1034 [86]
v. There can be only one DNAME record for a domain name. 6672 [96]

vi. A domain name cannot have both DNAME and NS records unless there is an SOA record as well. 6672 [96]
vii. No DNAME record domain name can be a prefix of another record’s domain name. 6672 [96]

viii. No NS record can have a non-SOA domain name that is a prefix of another NS record. 1034 [86]
ix. Glue records must exist for all NS records in a zone. 1035 [87]

Table 2: Summary of DNS zone file validity conditions specified in various RFCs.

would be as string values (a domain name is just a ‘.’ separated
string). Indeed, modern SMT solvers like Z3 [27] support
the logical theory of strings, so this is a natural approach to
consider. However, the theory of strings is in general unde-
cidable [14, 35]. Moreover, this encoding would require us
to define complex predicates for manipulating domain names,
including extracting each of the labels of a domain name and
checking whether one domain name is a prefix of another.

Therefore, rather than model domain names as strings, we
take advantage of the observation that the particular character
values in a domain name label string do not matter for DNS
lookup. Instead, all that matters is whether two labels are
equivalent to one another and whether a label represents a
wildcard. As such, we encode a domain name in Zen as a list
of integers and use a specific integer value to represent the
wildcard character ‘*’. This allows us to use simple, efficient
integer operations and constraints to manipulate domain
names according to our formal model.

3.5 Handling Unbounded Data
A final challenge associated with symbolic execution for
our formal model is the fact that there are several sources
of unboundedness. For example, a zone file can contain an
unbounded number of records, and a domain name can contain
an unbounded number of labels. Our Zen model contains an
unbounded number of paths, since the number of resource
records in a zone file is unbounded and the function to select
the best records must examine all of them and compare them
to one another. SMT constraint solvers have limited support
for unbounded data structures such as lists, and in general, rea-
soning about such constraints requires quantifiers, which lead
to undecidability [95]. Therefore, in our Zen implementation
we only consider inputs that have a bounded size, e.g., at most
N records in a zone file, and hence only produce test cases that
respect these bounds. The size of inputs is a parameter that
is configurable by the user. While the SCALE approach can
therefore fail to detect some errors, we provide experimental
evidence of the existence of a small-scope property [43],
meaning that many interesting behaviors, and behavioral
errors, can be exercised with small tests (§ 5.1).

3.6 Generating Tests for Invalid Zone Files
While it’s critical to be able to generate well-formed zone files
for testing, bugs can also lurk in implementations’ handling of
ill-formed zones. Many DNS implementations use zone-file
preprocessors to perform syntactic and semantic checks. For
example, BIND uses named-checkzone [24], KNOT uses
kzonecheck [18], and POWERDNS uses pdnsutil [20]. The
implementations either reject an ill-formed zone or accept it
but convert it to a valid one by ignoring certain records that
cause it to be semantically ill-formed.

Many security vulnerabilities for software lie in the
incorrect handling of unexpected inputs (e.g., in parsers [1]),
and DNS software should be no different. Since our executable
model includes a formulation of the validity conditions for
zone files, we leverage Zen to systematically generate zone
files that violate one of these conditions. For example, we ask
Zen to generate a zone file in which all but the 7th condition
in Table 2 is violated and the rest are satisfied.

If an invalid zone is rejected, then there is no issue, but if it
is accepted, then there can be errors in how the zone is used for
DNS lookups. To test for such errors we must also be able to
generate queries for these zones. However, our formal model
is only well defined for valid zone files so we cannot use it to
generate queries. Instead, we use a technique from our prior
work on zone-file verification [71] to partition queries into
equivalence classes (ECs) relative to a given zone file. An
equivalence class is a set of queries with the same resolution
behavior, assuming a correct underlying DNS implementation,
and the ECs are generated through a simple syntactic pass
over a zone file. FERRET generates these ECs and then uses
one representative query from each EC as a test. Though the
number of ECs can vary widely, depending on the records
in a zone file, in practice a zone containing four records will
typically induce tens of ECs.

4 System Overview

FERRET is divided into several components, which are de-
picted in Figure 2. First it uses our Zen model described above
to generate test inputs. Because domain names are encoded in

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 313

Zen using lists of integer labels (see § 3.4), FERRET includes
a shim layer that translates the generated zone files and queries
into meaningful domain names by mapping these labels to a
collection of predefined strings (e.g., com). FERRET uses the
equivalence-class (EC) generation algorithm of GROOT [71]
to generate test queries for invalid zone files (§ 3.6).

FERRET uses Docker [83] to construct a work-
ing container image of each implementation. We
cloned the implementations’ code as of October 1st,
2020 [16, 21, 23, 25, 29, 33, 76, 102], from their open-source
repositories on GitHub [84] and GitLab [100]. FERRET starts
a container for each image, and each container serves one zone
file at a time as an authoritative zone. FERRET uses a Python
library dnspython [17] to construct queries and send them
to each implementation’s container. For each test case, the
Python script prepares the container by stopping the running
DNS nameserver, copying the new zone file and the necessary
implementation-dependent configuration files to the container,
and then restarting the DNS nameserver.

Finally, FERRET performs response grouping followed
by fingerprinting to deduplicate errors that are likely to have
the same root cause. For each test case, two DNS responses
are considered equivalent, and hence in the same group, if
they have the same response flags, return code, answer, and
additional sections. FERRET only compares the authority
section in two responses when their answer sections are
empty. We do this because implementations are free to add
additional records like a zone’s SOA or NS records along with
the requested records. We then fingerprint tests that result in
more than one group and thereby represent a likely error. The
fingerprint for a valid test is a tuple consisting of (1) the case
in the formal model (the leaf label in the decision tree from
Figure 5) as well as (2) the response groupings. An example
fingerprint is

〈
R1,

{
{NSD, KNOT, POWERDNS, YADIFA},

{BIND, COREDNS}, {TRUSTDNS, MARADNS}
}〉

. The
fingerprint for an ill-formed test is similar but we use the
validity condition being violated instead of the model case.

5 Results

5.1 Testing Using Valid Zone Files
Using FERRET, we generated thousands of tests and used
them to compare the behavior of 8 popular open-source
authoritative implementations of DNS. Table 3 shows the
8 implementations, the languages they are implemented in,
and a brief description of their focus or how they are used. We
constrained FERRET to generate tests where the length of each
domain name and the number of records in the zone was at
most 4. We ran FERRET on a 3.6GHz 72 core machine with
200 GB of RAM and it generated a total of 12,673 valid test
cases, one per path in our Zen model that is consistent with
the length constraints, in approximately 6 hours. Users can
run the tests in parallel, so the runtime depends heavily on the

Implementation Language Description
BIND [23] C de facto standard
POWERDNS [21] C++ popular in N. Europe
NSD [76] C hosts several TLDs
KNOT [25] C hosts several TLDs
COREDNS [16] Go used in Kubernetes
YADIFA [29] C created by EURid (.eu)
TRUSTDNS [33] Rust security, safety focused
MARADNS [102] C lightweight server

Table 3: The eight open-source DNS nameserver implemen-
tations tested by FERRET. FERRET can test implementations
implemented in any language.

Model Case #Tests #Tests Failing #Fingerprints
E1 3180 239 7
E2 12 10 5
E3 96 12 3
E4 6036 5312 11
W1 60 33 8
W2 24 21 9
W3 18 16 1
D1 230 65 4
R1 2980 2529 27
R2 37 3 1

Table 4: Test generation statistics for n= 4. The model case
refers to the leaves in Figure 5. Even though the number of
failed tests is higher, the number of fingerprints is small.

user resources for parallelization. Each test takes around 10
seconds to run on average, and most of the time is spent setting
up the zone file and necessary configuration files.

As described in § 4, FERRET runs each test against all 8
implementations and groups their responses. Out of 12,673
tests, FERRET found more than one group in the majority
(8,240) of tests. Table 4 shows the number of tests generated
for each case in the model (Figure 5), the number of tests
where there was more than one group, and the number of
unique fingerprints formed for each model case.

In total the 8,240 tests with more than one group were
partitioned into 76 unique fingerprints, for a reduction of more
than two orders of magnitude. For 24 of these fingerprints
there exists only a single test case, while one fingerprint
has 1892 corresponding tests. These 76 fingerprints can
over-count the number of bugs since a single implementation
issue can cause errors on multiple model paths. For example,
YADIFA, TRUSTDNS, and MARADNS do not support DNAME
records; so any generated test containing this feature will cause
them to give the wrong answer or fail to respond. However,
two tests can also have the same fingerprint despite different
implementation root causes; so the number of fingerprints can

314 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

also under-count the number of bugs.
For these reasons, we manually examined the test cases

matching each fingerprint, examining them all when the fin-
gerprint has 4 or fewer tests and otherwise examining a small
random sample. By doing this we identified 24 unique bugs, as
summarized in Table 6 (all except the ones marked with ✧). All
of these have been confirmed as actual bugs (no false positives)
and developers have fixed 14 of them at the time of writing.

5.2 Testing Using Invalid Zone Files
FERRET generated 900 ill-formed zone files, 100 violating
each of the validity conditions in Table 2, in 2.5 hours. We
used these zone files to test the four most widely used DNS
implementations — BIND, NSD, KNOT, POWERDNS— as
these have a mature zone-file preprocessor available.

There is no practical limit on the number of invalid zone
files the tool can generate. We limited it to 100 for each
violation in our experiments, but one could use FERRET to
generate many more such tests if desired. Similarly, though
we only explored violations of single well-formedness rules, it
is straightforward to use FERRET to generate tests that violate
a combination of rules. As a first step, FERRET checked all
of the zone files with each implementation’s preprocessor:
named-checkzone [24] for BIND, kzonecheck [18] for
KNOT, nsd-checkzone [77] for NSD, and pdnsutil [20] for
POWERDNS. Each implementation can either reject or accept
the invalid zone file and Table 5 shows the statistics of how
different implementations treat the zone files.

All together there are 573 invalid zone files (the first five
rows in the table) that are accepted by more than one DNS
implementation and so are amenable to differential testing.
Our formal model relies on zones to be well-formed: so we
cannot use it to generate queries for these zones. Instead we
leverage GROOT [71], which generates query equivalence
classes (ECs) of the form ⟨example.com, t⟩ for a given zone
file, one for each DNS record type t, and does not require the
zone to be semantically well-formed. We used 7 query types:
A, NS, CNAME, DNAME, SOA, TXT, AAAA. We excluded 19 zone
files as GROOT generated over 200 ECs for each of them due
to multiple interacting DNAME loops. For the remaining 554
zone files, the average number of ECs is 21*7 i.e., 21 domains
names and each domain name is paired with the 7 types, and
we chose one representative query from each EC.

The last column in Table 5 shows the results of differential
testing. For example, 106 out of the 201 zone files in the first
row exhibited differences among the three implementations
during testing. We manually inspected all differences for the
zone files that violated conditions of i, ii, iii, vi, and ix, as there
were 12 or fewer such differences in each category, and we
inspected a random sample for the others. By doing this we
identified 6 new errors as shown in Table 6 with the ✧ symbol
and all of them are fixed. Some of the errors identified earlier
were also present here but are not double-counted.

D
N
I
B

D
S
N

T
O
N
K

S
N
D
P

#Zones Condition
violated

#Zones with
a difference

A A A R 100 + 100 + 1 i or viii or ix 11 + 94 + 1
A A R R 100 + 61 vi or ix 8 + 3
A R A R 17 + 100 ii or iii 1 + 6
A R R A 60 vii 53
R A R A 34 ix 7
A R R R 39 vii -
R A R R 4 ix -
R R R A 95 + 1 v or vii -
R R R R 83 + 100 + 5 ii or iv or v -

Table 5: Invalid zone file statistics. The second row shows that
100 (61) zone files that violate condition vi (ix) are accepted
by only BIND and NSD, and 8 (3) of them resulted in some
difference between the two implementations.

5.3 Example Bugs
We now provide a detailed description of some of the bugs
from Table 6. Two of them were already described in § 2.2.

Bug #3: COREDNS Crash. FERRET generated the
following test that causes COREDNS, the recommended
nameserver for Kubernetes, to crash. It was subsequently
confirmed and fixed by the COREDNS developers.

example. SOA ...
∗.example. CNAME foo.example.

Query: ⟨baz.bar.example., CNAME⟩

In this example the zone file has a wildcard CNAME record
that rewrites any query ending with the label example to
foo.example. This rewritten query will then match the
wildcard record again and so on, causing COREDNS to loop
and consume resources until, eventually, the server crashes
with the following message:

runtime: goroutine stack exceeds 1000000000-byte limit
runtime: sp=0xc03c6c0378 stack=[0xc03c6c0000, ...]
fatal error: stack overflow

Interestingly, COREDNS correctly guards against CNAME loops
that do not involve wildcard; so only a test that combines
CNAME and wildcards will trigger the bug. After our bug report,
the developers fixed the issue by adding a loop counter and
breaking the loop if the depth exceeds nine. They commented:
“Note the answer we’re returning will be incomplete (more
cnames to be followed) or illegal (wildcard cname with
multiple identical records). For now it’s more important to
protect ourselves than to give the client a valid answer.”

Crashes like this represent serious security vulnerabilities,
particularly in multi-tenant settings such as the attack
described earlier in Figure 4(a).

Bug #4: Wrong RCODE for synthesized CNAME. FERRET
generated a zone that violates condition vii in Table 2:

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 315

Implementation Bugs Found Bug Type Status

BIND

Sibling glue records not returned [47] Wrong Additional ✓

Zone origin glue records not returned [45] Wrong Additional ✓

DNAME recursion denial-of-service✧ [44] Server Crash □✓
Wrong RCODE for synthesized record✧ [46] Wrong RCODE □✓

NSD

DNAME not applied recursively [65] Wrong Answer □✓
Wrong RCODE when * is in Rdata [64] Wrong RCODE □✓
Used NS records below delegation✧ [67] Wrong Answer □✓
Wrong RCODE for synthesized record✧ [66] Wrong RCODE □✓

POWERDNS
CNAME followed when not required [62] Wrong Answer ✓

pdnsutil check-zone DNAME-at-apex✧ [63] Preprocessor Bug □✓

KNOT

Incorrect record synthesis [58] Wrong Answer □✓
DNAME not applied recursively [61] Wrong Answer □✓
Used records below delegation [59] Wrong Answer □✓
Error in DNAME-DNAME loop KNOT test [60] Faulty KNOT Test □✓
Wrong RCODE for synthesized record✧ [91] Wrong RCODE □✓

COREDNS

NXDOMAIN for existing domain [53] Wrong RCODE □✓
Wrong RCODE for CNAME target [55] Wrong RCODE □✓
Wildcard CNAME loops & DNAME loops [52] Server Crash □✓
Wrong RCODE for synthesized record [57] Wrong RCODE □✓
CNAME followed when not required [56] Wrong Answer □✓
Sibling glue records not returned [54] Wrong Additional ✓

YADIFA

CNAME chains not followed [70] Wrong Answer □✓
Wrong RCODE for CNAME target [69] Wrong RCODE □✓
Used records below delegation [68] Wrong Answer □✓

MARADNS† AA flag set for zone cut NS RRs Wrong Answer ✓

Used records below delegation Wrong Answer ✓

TRUSTDNS†

Wildcard match only one label [49] Wrong Answer ✓

Used records below delegation [51] Wrong Answer ✓

AA flag set for zone cut NS RRs [50] Wrong Flag ✓

CNAME loops crash the server [48] Server Crash ✓

Table 6: Summary of the bugs found by FERRET across the eight implementations. Status column represents whether the
developers responded and acknowledged (✓) and also fixed (□✓) to the filed bug report. The † symbol denotes implementations
with unreported issues due to missing or unimplemented features. The ✧ symbol denotes the bugs found exclusively using testing
with invalid zone files. We reported all the bugs FERRET identified to the respective developers before publishing this paper.

test.com. SOA ...
foo.test.com. DNAME bar.test.com.

cs.foo.test.com. AAAA 1:db8::2:1

Query: ⟨www.foo.test.com., CNAME⟩

BIND and POWERDNS accepted the zone file but NSD
and KNOT did not. FERRET chose the above query as the
representative from the query EC ⟨α.foo.test.com., CNAME⟩
generated by GROOT, where α represents any sequence of
labels that does not start with cs. BIND responded with:

"rcode NXDOMAIN",
";ANSWER",
"foo.test.com. 500 IN DNAME bar.test.com.",
"www.foo.test.com. 500 IN CNAME www.bar.test.com.",

The response from POWERDNS was the same but with a
NOERROR RCODE. The RCODE is important as resolvers can use
QNAME minimization (RFC 7816 [6]) to wrongly conclude

domain (non-)existence if an incorrect RCODE is returned.
However, since the RFCs do not describe this subtle case, the
intended behavior is unclear. Since the query is not relevant
to the AAAA record, which violates the validity condition,
to further investigate this issue we decided to remove that
record and check the responses from NSD and KNOT. Both
responded with the same response as BIND, leading us to
(wrongly) conclude that the issue was with POWERDNS.

To our surprise, after reporting the issue to POWERDNS
they responded: “The PowerDNS behavior looks correct to me.
Are you sure BIND, NSD, and Knot all return NXDOMAIN
on a CNAME query in this context?” BIND and KNOT noticed
the issue we filed on POWERDNS’s GitHub and fixed the
bug almost immediately, even before we filed reports on
their repositories. After some back and forth with the NSD
developers they concurred saying: “If you are right that the
other implementations do this, then we can do that too; that
makes less unexpected surprises in packet responses.”

316 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Max Length (n) 2 3 4 5
No. of Tests 52 618 12673 646K (51K tested)
Test generation time 10m 40m 6h 14d
No. of Tests Failing 12 224 8240 41173
No. of Fingerprints 9 22 76 115
No. of Bugs 4 14 24 27

Table 7: Results summary for different bounds.

Bug #5: POWERDNS pdnsutil bug. FERRET generated
the following test case and POWERDNS returned an incorrect
response, exposing a bug in its zone-file preprocessor.

dept.com. SOA ...
dept.com. DNAME dept.edu.

host.dept.com. A 1.1.1.1

Query: ⟨host.dept.com., A⟩

The zone file is considered invalid as it violates condition vii
in Table 2. nsd-checkzone and kzonecheck preprocessors
reject the zone file but named-checkzone and pdnsutil do
not raise any errors or warnings and accept the zone file.
When queried for the A record, POWERDNS returned this
record even though it should have used the DNAME record.
POWERDNS has a long-standing open issue about handling
DNAME occlusion (records below a DNAME, which should be
ignored), and pdnsutil generally gives a warning but did not
in this specific case. We filed a bug report for this test and the
developers confirmed a bug in pdnsutil when the DNAME is
at the apex of the zone. This is now fixed and pdnsutil gives
a warning as in other occlusion cases.

5.4 Small-scope Property Validation
Finally, we performed an experiment to validate the small-
scope property that justifies our approach — many interesting
behaviors can be covered with small tests. We used FERRET
to generate valid tests where the length of each domain name
and the number of records in the zone were limited to n, for
different values of n. Table 7 shows the results. For example,
when n = 2 there are 52 feasible paths through the model.
FERRET generated the corresponding 52 tests in 10 minutes,
out of which 12 had more than one group, and these 12 fell into
9 fingerprints. By inspecting those failed tests, we identified
4 unique bugs, which are a subset of the ones identified by our
evaluation described in § 5.1, where n=4.

Our experiment identifies two distinct forms of small-scope
property. First, the DNS query resolution protocol itself, as
represented by our logical model, has a small-scope property.
In particular, when n=2 all leaf nodes in Figure 5 are covered
by at least one test, except for the R1 leaf, and all leaf nodes
are covered when n is 3 or higher. Hence, although we are
restricted to generating small zones, we can still cover all
return points in our formal model, each of which represents
a distinct RFC behavior.

Second, the DNS nameserver implementations have a small-
scope property. In part the fact that we have identified dozens
of subtle new errors is evidence that small tests can explore in-
teresting behaviors. The results in Table 7 add further evidence.
As we increase the size of n from 2 to 3 to 4, the number of bugs
identified goes from 4 to 14 to 24. In the n=5 case, FERRET
generated over 646K tests and took almost 14 days to finish.
The distribution of tests across model cases is similar to the
n=4 breakdown shown in Table 4, where the majority of tests
fall into the E1, E4 and R1 cases. We randomly sampled 50K
tests to run from these three cases, according to their propor-
tions. The other cases totalled to around 1000 tests, so we ran
all of them. Out of the resulting 115 fingerprints, 50 fingerprints
were in common with the fingerprints of n=4. We therefore
decided to examine the remaining 65 fingerprints to search for
new bugs. For these 65 fingerprints, the median number of
tests in each fingerprint was 3, and the mode was 1. We found
three bugs that we did not find with n= 4, but all three bugs
were covered by the tests for invalid zones with n=4 (§ 5.2). In
other words, increasing n from 4 to 5 has so far not uncovered
any new errors in the DNS nameserver implementations.

6 Discussion

Our SCALE approach worked surprisingly well at identifying
subtle errors in implementations. This was not obvious from
the beginning, since each implementation can have very
different control logic compared to one another and compared
to our formal model. And yet seemingly the tests derived from
paths through our formal RFC model frequently uncover bugs
in rare control paths for these implementations.

On the other hand, this approach is not a panacea. We
found situations where one path in the model corresponds
to multiple paths in an implementation due to the internal
data structures that it uses to represent different record types,
which can lead to FERRET missing some issues. This showed
up, for example, with empty non-terminals (ENTs) – domain
names that own no resource records but have subdomains
that do. Since there is no explicit branch that differentiates
empty non-terminals in the model, FERRET did not generate
test cases where the zone file had both an ENT and a query
targeting that ENT. However, by manually testing a few such
cases, we found two more bugs in COREDNS. Going forward
it may be possible to extend FERRET to find more cases like
this by adding additional non-semantic branches to the model
to expose behavior thought to be error-prone.

More generally, we believe our SCALE approach to
RFC compliance testing and “ferreting” out bugs through
(i) symbolic execution of a small formal model to jointly
generate configurations together with inputs, combined with
(ii) differential testing, and (iii) fingerprinting, could be useful
more broadly beyond the DNS. For instance, there are many
other complex and distributed protocols used at different
network layers such as routing protocols like BGP and OSPF,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 317

flow control protocols like PFC, new transport layer protocols
such as QUIC, and many more. It would be interesting future
work to apply the SCALE methodology beyond DNS.

7 Related Work

FERRET and SCALE are related to several lines of prior work
in DNS and in automated testing.

Verified DNS implementations. One approach is to build,
from scratch, a nameserver implementation verified to be
correct. This approach has found some success in other
domains, for example, in operating system microkernels [73]
using proof assistants such as Coq [79]. Ironsides [12] is an
implementation of a DNS resolver and authoritative name-
server that uses SPARK [3] to prove the absence of dataflow
errors such as buffer overflows. While this work is promising,
it does not formalize the DNS RFC semantics and thus cannot
provide any functional correctness guarantees. Moreover,
open source implementations such as BIND [23] are already
used pervasively in the Internet. Providing a new verified
implementation does not help these existing deployments.

Models for DNS. In our prior work on the GROOT zone-file
verifier [71] we provided the first formalization of DNS
semantics. However, it was a paper formalism and was
only used to prove the correctness of the equivalence-class
generation algorithm that forms the core of GROOT’s approach
to verifying zone files. Indeed, GROOT assumes that DNS
implementations conform to the DNS RFCs. Our work is
therefore complementary, but we used GROOT’s logical model
as a basis for our executable Zen model. We also leveraged
GROOT’s equivalence-class generation algorithm to create
queries for invalid zone files.

Fuzz testing. Fuzz testing with semi-random and/or
grammar-based tests has seen success in recent
years [1, 5, 40, 78, 101]. However, as mentioned in § 1,
fuzzing cannot easily be used in our setting due to the need
to navigate complex constraints and dependencies, and hence
existing fuzzers for DNS [10, 89, 99] are limited to testing
DNS parsers and use a fixed zone file.

Symbolic execution. Symbolic execution [36, 37], which
systematically solves for inputs that take different execution
paths in a program, has also been successful [9, 11]. However,
as described in § 1, due to the scale and complexity of DNS
nameserver implementations, symbolic execution has been
used only on individual functions and has avoided the need
to generate zone files [93]. Our SCALE approach uses
symbolic execution to drive test generation, but it does so on an
executable model of the RFC behavior, which is significantly
smaller and simpler than an implementation and has carefully
chosen data representations that are amenable to symbolic
execution. As a result, symbolic execution on our model is
tractable and allows us to jointly generate (small) zone files
and DNS queries that exercise interesting behaviors.

Model- and specification-based testing. In model-based
testing (MBT) [8, 88, 90, 104] a user builds an abstract model
of the system to test (e.g., a finite state machine [8, 104]). A
tester implementation then generates paths through this ab-
stract model and creates concrete tests by “filling in” missing
information from the abstract example. Closest to our work are
model-based testers for black-box network functions (e.g., [30,
98]), which also use symbolic execution to generate tests. How-
ever, they respectively use finite-state machine models [30] and
a domain-specific language for specifying network function
behavior [98], while we have implemented a full functional
model of DNS in a general modeling language [4]. Further,
their setting does not require generating configurations, which
is the key technical challenge for testing protocols like DNS.

Specification-based testing leverages a user-provided
specification of the valid inputs to a function. Most commonly,
tests are generated by finding inputs that satisfy a given pre-
condition [7]. Like SCALE these approaches typically rely on
a small-scope hypothesis [43] and hence focus on generating
small inputs. Recent work has developed an approach to
automated testing for QUIC implementations [81, 82] that
leverages a formal specification, but in a very different way
than in our approach. Specifically, the specification models
the party that is interacting with the implementation being
tested and is used to generate valid responses.

Finally, recent works automatically learn protocol models
from implementations [31] or RFCs [105]. We could
potentially adopt these techniques in the future to reduce the
burden of producing our formal model.

8 Conclusion
Despite its importance as the “phonebook” of the Internet,
DNS is fraught with implementation bugs that can impact mil-
lions of users. In this paper, we introduced FERRET, the first
automatic test generator for RFC compliance of DNS name-
server implementations. The SCALE approach underlying
FERRET uses symbolic execution of a formal model to jointly
generate configurations together with inputs. FERRET com-
bines this technique with differential testing and fingerprinting
to identify and automatically triage implementation errors. In
total FERRET identified 30 new bugs, including at least two for
each of the 8 implementations that we tested. We believe that
this combination of techniques can generalize to “ferret” out
subtle RFC-compliance bugs in large implementation code
bases for other network protocols that use configurations.

Acknowledgements

We thank our shepherd Phillipa Gill and the anonymous
reviewers for their insightful comments. We also thank the
DNS developers and the DNS-OARC community for their
feedback on the bug reports. This work was partially supported
by NSF grants CNS-1704336 and CNS-1901510.

318 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] American Fuzzing Lop (AFL). Afl 2018.
https://lcamtuf.coredump.cx/afl/.

[2] Amazon. Route 53.
https://aws.amazon.com/route53/.

[3] John Barnes. Spark: The Proven Approach to High
Integrity Software. Altran Praxis, London, GBR, 2012.

[4] Ryan Beckett and Ratul Mahajan. A general framework
for compositional network modeling. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
HotNets ’20, page 8–15, New York, NY, USA, 2020.
Association for Computing Machinery.

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roy-
choudhury. Coverage-based greybox fuzzing as
markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, page 1032–1043, New York, NY,
USA, 2016. Association for Computing Machinery.

[6] Stéphane Bortzmeyer. DNS Query Name Minimisation
to Improve Privacy. RFC 7816, March 2016.

[7] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: Automated testing based on java
predicates. In Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA ’02, page 123–133, New York, NY,
USA, 2002. Association for Computing Machinery.

[8] Josip Bozic, Lina Marsso, Radu Mateescu, and Franz
Wotawa. A formal tls handshake model in lnt. In John P.
Gallagher, Rob van Glabbeek, and Wendelin Serwe,
editors, Proceedings Third Workshop on Models for
Formal Analysis of Real Systems and Sixth International
Workshop on Verification and Program Transformation,
Thessaloniki, Greece, 20th April 2018, volume 268
of Electronic Proceedings in Theoretical Computer
Science, pages 1–40, Greece, 2018. Open Publishing
Association.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’08,
page 209–224, USA, 2008. USENIX Association.

[10] Frederic Cambus. Fuzzing dns zone parsers.
https://www.cambus.net/fuzzing-dns-zone-
parsers/.

[11] Marco Canini, Vojin Jovanović, Daniele Venzano,
Dejan Novaković, and Dejan Kostić. Online testing
of federated and heterogeneous distributed systems. In
Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, page 434–435, New York, NY, USA,
2011. Association for Computing Machinery.

[12] M. Carlisle and B. Fagin. Ironsides: Dns with
no single-packet denial of service or remote code
execution vulnerabilities. In 2012 IEEE Global
Communications Conference (GLOBECOM), pages
839–844, Anaheim, CA, USA, 2012. IEE.

[13] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 711–725, 2018.

[14] Taolue Chen, Yan Chen, Matthew Hague, Anthony W.
Lin, and Zhilin Wu. What is decidable about string
constraints with the replaceall function. Proc. ACM
Program. Lang., 2(POPL), December 2017.

[15] Bind Community. Bind gitlab issues.
https://gitlab.isc.org/isc-projects/bind9/
-/issues.

[16] CoreDNS community. Coredns.
https://coredns.io/.
Code commit used: https://
github.com/coredns/coredns/tree/
6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8.

[17] Dnspython Community. Dnspython.
https://dnspython.readthedocs.io/en/latest/
index.html.

[18] Knot community. kzonecheck – knot dns zone file
checking tool.
https://www.knot-dns.cz/docs/2.5/html/
man_kzonecheck.html.

[19] NSD Community. Nsd github issues.
https://github.com/NLnetLabs/nsd/issues.

[20] PowerDNS community. Pdnsutil.
https://doc.powerdns.com/authoritative/
manpages/pdnsutil.1.html.

[21] PowerDNS Community. Powerdns.
https://www.powerdns.com/.
Code commit used: https://
github.com/PowerDNS/pdns/tree/
a03aaad7554483ee6efe72a81eda00a9d1a94fe5.

[22] PowerDNS Community. Powerdns github issues.
https://github.com/PowerDNS/pdns/issues?q=
is%3Aissue+is%3Aopen+label%3Aauth.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 319

https://lcamtuf.coredump.cx/afl/
https://aws.amazon.com/route53/
https://www.cambus.net/fuzzing-dns-zone-parsers/
https://www.cambus.net/fuzzing-dns-zone-parsers/
https://gitlab.isc.org/isc-projects/bind9/-/issues
https://gitlab.isc.org/isc-projects/bind9/-/issues
https://coredns.io/
https://github.com/coredns/coredns/tree/6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8
https://github.com/coredns/coredns/tree/6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8
https://github.com/coredns/coredns/tree/6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8
https://dnspython.readthedocs.io/en/latest/index.html
https://dnspython.readthedocs.io/en/latest/index.html
https://www.knot-dns.cz/docs/2.5/html/man_kzonecheck.html
https://www.knot-dns.cz/docs/2.5/html/man_kzonecheck.html
https://github.com/NLnetLabs/nsd/issues
https://doc.powerdns.com/authoritative/manpages/pdnsutil.1.html
https://doc.powerdns.com/authoritative/manpages/pdnsutil.1.html
https://www.powerdns.com/
https://github.com/PowerDNS/pdns/tree/a03aaad7554483ee6efe72a81eda00a9d1a94fe5
https://github.com/PowerDNS/pdns/tree/a03aaad7554483ee6efe72a81eda00a9d1a94fe5
https://github.com/PowerDNS/pdns/tree/a03aaad7554483ee6efe72a81eda00a9d1a94fe5
https://github.com/PowerDNS/pdns/issues?q=is%3Aissue+is%3Aopen+label%3Aauth
https://github.com/PowerDNS/pdns/issues?q=is%3Aissue+is%3Aopen+label%3Aauth

[23] Internet Systems Consortium. Bind 9.
https://www.isc.org/bind/.
Code commit used: https://
gitlab.isc.org/isc-projects/bind9/-/tree/
dbcf683c1a57f49876e329fca183cb39d20ca3a4.

[24] Internet Systems Consortium. named-checkzone(8).
https://linux.die.net/man/8/named-checkzone.

[25] CZ.NIC. Knot.
https://www.knot-dns.cz/.
Code commit used: https://
gitlab.nic.cz/knot/knot-dns/-/tree/
563fcdd886b5d5c52bceeb8fda3c4bda59ece73e.

[26] National Vulnerability Database. CVE-2021-25215
Detail.
https://nvd.nist.gov/vuln/detail/CVE-2021-
25215.

[27] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[28] Robert Elz and Randy Bush. Clarifications to the DNS
Specification. RFC 2181, July 1997.

[29] EURid.eu. Yadifa.
https://www.yadifa.eu/.
Code commit used: https://
github.com/yadifa/yadifa/tree/
dc5bed2fb8ec204af9b65eeb91934c2c85098cbb.

[30] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka,
Sagar Chaki, and Vyas Sekar. BUZZ: Testing
Context-Dependent policies in stateful networks. In
13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 275–289,
Santa Clara, CA, March 2016. USENIX Association.

[31] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and
Alexandra Silva. Prognosis: Closed-box analysis of
network protocol implementations. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 762–774, New York, NY, USA,
2021. Association for Computing Machinery.

[32] Jonathan Foote. How to fuzz a server with american
fuzzy lop.
https://www.fastly.com/blog/how-fuzz-
server-american-fuzzy-lop, 2015.

[33] Benjamin Fry and Community. Trust-dns.
http://trust-dns.org/.
Code commit used: https://

github.com/bluejekyll/trust-dns/tree/
7d9b186121fb5cb331cf2ec6baa47846b83de8fc.

[34] James Fryman. Dns outage post mortem.
https://github.blog/2014-01-18-dns-outage-
post-mortem/, 2014.

[35] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama,
and Martin Rinard. Word equations with length
constraints: What’s decidable? In Proceedings of
the 8th International Conference on Hardware and
Software: Verification and Testing, HVC’12, page
209–226, Berlin, Heidelberg, 2012. Springer-Verlag.

[36] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, page
206–215, New York, NY, USA, 2008. Association for
Computing Machinery.

[37] Patrice Godefroid, Nils Klarlund, and Koushik
Sen. Dart: Directed automated random testing. In
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’05, page 213–223, New York, NY, USA, 2005.
Association for Computing Machinery.

[38] Suzanne Goldlust, Michał Kępień, Peter Davies, and Ev-
erett Fulton. CVE-2021-25215: An assertion check can
fail while answering queries for DNAME records that
require the DNAME to be processed to resolve itself.
https://kb.isc.org/v1/docs/cve-2021-25215.

[39] Google. Cloud dns.
https://cloud.google.com/dns.

[40] Sam Hocevar. zzuf: multi-purpose fuzzer.
http://caca.zoy.org/wiki/zzuf/., 2007.

[41] Paul E. Hoffman, Andrew Sullivan, and Kazunori
Fujiwara. DNS Terminology. RFC 8499, January 2019.

[42] Dyn Inc. Dynamic dns.
https://account.dyn.com/.

[43] Daniel Jackson. Alloy: A lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290, April 2002.

[44] Siva Kakarla, Mark Andrews, Michał Kępień, Peter
Davies, and Michal Nowak. [CVE-2021-25215]
An assertion check can fail while answering queries
for DNAME records that require the DNAME to be
processed to resolve itself.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2540.

320 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.isc.org/bind/
https://gitlab.isc.org/isc-projects/bind9/-/tree/dbcf683c1a57f49876e329fca183cb39d20ca3a4
https://gitlab.isc.org/isc-projects/bind9/-/tree/dbcf683c1a57f49876e329fca183cb39d20ca3a4
https://gitlab.isc.org/isc-projects/bind9/-/tree/dbcf683c1a57f49876e329fca183cb39d20ca3a4
https://linux.die.net/man/8/named-checkzone
https://www.knot-dns.cz/
https://gitlab.nic.cz/knot/knot-dns/-/tree/563fcdd886b5d5c52bceeb8fda3c4bda59ece73e
https://gitlab.nic.cz/knot/knot-dns/-/tree/563fcdd886b5d5c52bceeb8fda3c4bda59ece73e
https://gitlab.nic.cz/knot/knot-dns/-/tree/563fcdd886b5d5c52bceeb8fda3c4bda59ece73e
https://nvd.nist.gov/vuln/detail/CVE-2021-25215
https://nvd.nist.gov/vuln/detail/CVE-2021-25215
https://www.yadifa.eu/
https://github.com/yadifa/yadifa/tree/dc5bed2fb8ec204af9b65eeb91934c2c85098cbb
https://github.com/yadifa/yadifa/tree/dc5bed2fb8ec204af9b65eeb91934c2c85098cbb
https://github.com/yadifa/yadifa/tree/dc5bed2fb8ec204af9b65eeb91934c2c85098cbb
https://www.fastly.com/blog/how-fuzz-server-american-fuzzy-lop
https://www.fastly.com/blog/how-fuzz-server-american-fuzzy-lop
http://trust-dns.org/
https://github.com/bluejekyll/trust-dns/tree/7d9b186121fb5cb331cf2ec6baa47846b83de8fc
https://github.com/bluejekyll/trust-dns/tree/7d9b186121fb5cb331cf2ec6baa47846b83de8fc
https://github.com/bluejekyll/trust-dns/tree/7d9b186121fb5cb331cf2ec6baa47846b83de8fc
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://kb.isc.org/v1/docs/cve-2021-25215
https://cloud.google.com/dns
http://caca.zoy.org/wiki/zzuf/.
https://account.dyn.com/
https://gitlab.isc.org/isc-projects/bind9/-/issues/2540
https://gitlab.isc.org/isc-projects/bind9/-/issues/2540

[45] Siva Kesava R Kakarla and Mark Andrews. Glue
records can be returned when the name server’s name
is same as the zone origin.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2385.

[46] Siva Kesava R Kakarla, Mark Andrews, and Michał
Kępień. DNAME: synthetized CNAME might be
perfect answer to CNAME query.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2284.

[47] Siva Kesava R Kakarla, Mark Andrews, and Michał
Kępień. Sibling (In-bailiwick rule of RFC 8499)
domain IP records not returned.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2384.

[48] Siva Kesava R Kakarla and Benjamin Fry. CNAME
loops throws off the server.
https://github.com/bluejekyll/trust-dns/
issues/1283.

[49] Siva Kesava R Kakarla and Benjamin Fry. Wildcards
match only one label.
https://github.com/bluejekyll/trust-dns/
issues/1342.

[50] Siva Kesava R Kakarla and Benjamin Fry. Zone cut
NS RRs returned as authoritative records.
https://github.com/bluejekyll/trust-dns/
issues/1273.

[51] Siva Kesava R Kakarla, Benjamin Fry, and Jonas
Bushart. Glue records returned as authoritative records
by the server .
https://github.com/bluejekyll/trust-dns/
issues/1272.

[52] Siva Kesava R Kakarla and Miek Gieben. Handling
wildcard CNAME loops.
https://github.com/coredns/coredns/issues/
4378.

[53] Siva Kesava R Kakarla and Miek Gieben. NXDO-
MAIN returned when the domain exists.
https://github.com/coredns/coredns/issues/
4374.

[54] Siva Kesava R Kakarla and Miek Gieben. Sibling
(In-bailiwick rule of RFC 8499) domain IP records can
also be returned along with NS records.
https://github.com/coredns/coredns/issues/
4377.

[55] Siva Kesava R Kakarla and Chris O’Haver. Non-
existent CNAME target in the same zone should be re-
turned with NXDOMAIN instead of NOERROR rcode.

https://github.com/coredns/coredns/issues/
4288.

[56] Siva Kesava R Kakarla, Chris O’Haver, and Kohei
Yoshida. CNAME need not be followed after a
synthesized CNAME for a CNAME query.
https://github.com/coredns/coredns/issues/
4398.

[57] Siva Kesava R Kakarla, Chris O’Haver, and Kohei
Yoshida. Return code for synthesized CNAME records
(from wildcards and DNAMEs).
https://github.com/coredns/coredns/issues/
4341.

[58] Siva Kesava R Kakarla, Libor Peltan, and Daniel
Salzman. Record incorrectly synthesized from
wildcard record.
https://gitlab.nic.cz/knot/knot-dns/-/
issues/715.

[59] Siva Kesava R Kakarla, Libor Peltan, and Daniel
Salzman. Records below delegation are not ignored
(kzonecheck also does not raise any issue).
https://gitlab.nic.cz/knot/knot-dns/-/
issues/713.

[60] Siva Kesava R Kakarla, Libor Peltan, Daniel Salzman,
and mscbg. DNAME-DNAME loop test case is not
a loop.
https://gitlab.nic.cz/knot/knot-dns/-/
issues/703.

[61] Siva Kesava R Kakarla, Libor Peltan, Daniel Salzman,
and Vladimír Čunát. DNAME not applied more than
once to resolve the query.
https://gitlab.nic.cz/knot/knot-dns/-/
issues/714.

[62] Siva Kesava R Kakarla and Peter van Dijk. CNAME
need not be followed after a synthesized CNAME for
a CNAME query.
https://github.com/PowerDNS/pdns/issues/
9886.

[63] Siva Kesava R Kakarla and Peter van Dijk. pdnsutil
DNAME checks have issues.
https://github.com/PowerDNS/pdns/issues/
9734.

[64] Siva Kesava R Kakarla and Wouter Wijngaards. ‘*’ in
Rdata causes the return code to be NOERROR instead
of NX.
https://github.com/NLnetLabs/nsd/issues/
152.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 321

https://gitlab.isc.org/isc-projects/bind9/-/issues/2385
https://gitlab.isc.org/isc-projects/bind9/-/issues/2385
https://gitlab.isc.org/isc-projects/bind9/-/issues/2284
https://gitlab.isc.org/isc-projects/bind9/-/issues/2284
https://gitlab.isc.org/isc-projects/bind9/-/issues/2384
https://gitlab.isc.org/isc-projects/bind9/-/issues/2384
https://github.com/bluejekyll/trust-dns/issues/1283
https://github.com/bluejekyll/trust-dns/issues/1283
https://github.com/bluejekyll/trust-dns/issues/1342
https://github.com/bluejekyll/trust-dns/issues/1342
https://github.com/bluejekyll/trust-dns/issues/1273
https://github.com/bluejekyll/trust-dns/issues/1273
https://github.com/bluejekyll/trust-dns/issues/1272
https://github.com/bluejekyll/trust-dns/issues/1272
https://github.com/coredns/coredns/issues/4378
https://github.com/coredns/coredns/issues/4378
https://github.com/coredns/coredns/issues/4374
https://github.com/coredns/coredns/issues/4374
https://github.com/coredns/coredns/issues/4377
https://github.com/coredns/coredns/issues/4377
https://github.com/coredns/coredns/issues/4288
https://github.com/coredns/coredns/issues/4288
https://github.com/coredns/coredns/issues/4398
https://github.com/coredns/coredns/issues/4398
https://github.com/coredns/coredns/issues/4341
https://github.com/coredns/coredns/issues/4341
https://gitlab.nic.cz/knot/knot-dns/-/issues/715
https://gitlab.nic.cz/knot/knot-dns/-/issues/715
https://gitlab.nic.cz/knot/knot-dns/-/issues/713
https://gitlab.nic.cz/knot/knot-dns/-/issues/713
https://gitlab.nic.cz/knot/knot-dns/-/issues/703
https://gitlab.nic.cz/knot/knot-dns/-/issues/703
https://gitlab.nic.cz/knot/knot-dns/-/issues/714
https://gitlab.nic.cz/knot/knot-dns/-/issues/714
https://github.com/PowerDNS/pdns/issues/9886
https://github.com/PowerDNS/pdns/issues/9886
https://github.com/PowerDNS/pdns/issues/9734
https://github.com/PowerDNS/pdns/issues/9734
https://github.com/NLnetLabs/nsd/issues/152
https://github.com/NLnetLabs/nsd/issues/152

[65] Siva Kesava R Kakarla and Wouter Wijngaards.
DNAME not applied more than once to resolve the
query.
https://github.com/NLnetLabs/nsd/issues/
151.

[66] Siva Kesava R Kakarla and Wouter Wijngaards.
DNAME: synthesized CNAME might be perfect
answer to CNAME query.
https://github.com/NLnetLabs/nsd/issues/
140.

[67] Siva Kesava R Kakarla and Wouter Wijngaards.
NS Records below delegation are not ignored (nsd-
checkzone also does not raise any issue).
https://github.com/NLnetLabs/nsd/issues/
174.

[68] Siva Kesava R Kakarla and yadifa. Records below
delegation are not ignored.
https://github.com/yadifa/yadifa/issues/12.

[69] Siva Kesava R Kakarla, yadifa, and edfeu. Non-existent
CNAME target in the same zone should be returned
with NXDOMAIN instead of NOERROR.
https://github.com/yadifa/yadifa/issues/11.

[70] Siva Kesava R Kakarla, yadifa, and edfeu. Why are
CNAME chains not followed?
https://github.com/yadifa/yadifa/issues/10.

[71] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz
Arzani, Todd Millstein, and George Varghese. Groot:
Proactive verification of dns configurations. In
Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM
’20, page 310–328, New York, NY, USA, 2020.
Association for Computing Machinery.

[72] James C. King. Symbolic execution and program
testing. Commun. ACM, 19(7):385–394, July 1976.

[73] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. Sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, page
207–220, New York, NY, USA, 2009. Association for
Computing Machinery.

[74] Eduard Kovacs. Dns servers crash due to bind security
flaw.
https://www.securityweek.com/dns-servers-
crash-due-bind-security-flaw, 2018.

[75] Marc Kührer, Thomas Hupperich, Jonas Bushart,
Christian Rossow, and Thorsten Holz. Going wild:
Large-scale classification of open dns resolvers.
In Proceedings of the 2015 Internet Measurement
Conference, IMC ’15, page 355–368, New York, NY,
USA, 2015. Association for Computing Machinery.

[76] NLnet Labs. Nsd.
https://nlnetlabs.nl/projects/nsd/about/.
Code commit used: https://
github.com/NLnetLabs/nsd/tree/
4043a5ab7be7abaec969011e48e4d0d60a0056a6.

[77] NLnet Labs. nsd-checkzone - nsd zone file syntax
checker.
https://www.nlnetlabs.nl/documentation/nsd/
nsd-checkzone/.

[78] Hyojeong Lee, Jeff Seibert, Dylan Fistrovic, Charles
Killian, and Cristina Nita-Rotaru. Gatling: Automatic
performance attack discovery in large-scale distributed
systems. ACM Trans. Inf. Syst. Secur., 17(4), April
2015.

[79] Pierre Letouzey. Programmation fonctionnelle
certifiée: l’extraction de programmes dans l’assistant
Coq. PhD thesis, Université Paris Sud, 2004.

[80] Edward P. Lewis. The Role of Wildcards in the Domain
Name System. RFC 4592, July 2006.

[81] Kenneth L. McMillan and Lenore D. Zuck. Composi-
tional testing of internet protocols. In 2019 IEEE Cyber-
security Development (SecDev), pages 161–174, 2019.

[82] Kenneth L. McMillan and Lenore D. Zuck. Formal
specification and testing of quic. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 227–240, New York, NY, USA,
2019. Association for Computing Machinery.

[83] Dirk Merkel. Docker: Lightweight linux containers
for consistent development and deployment. Linux J.,
2014(239):2, March 2014.

[84] Microsoft. Github, inc.
https://github.com/.

[85] Microsoft. Microsoft dns.
https://en.wikipedia.org/wiki/Microsoft_DNS.

[86] P. Mockapetris. Domain names - concepts and facilities.
RFC 1034, November 1987.

[87] Paul Mockapetris. Domain names - implementation
and specification. RFC 1035, November 1987.

322 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/NLnetLabs/nsd/issues/151
https://github.com/NLnetLabs/nsd/issues/151
https://github.com/NLnetLabs/nsd/issues/140
https://github.com/NLnetLabs/nsd/issues/140
https://github.com/NLnetLabs/nsd/issues/174
https://github.com/NLnetLabs/nsd/issues/174
https://github.com/yadifa/yadifa/issues/12
https://github.com/yadifa/yadifa/issues/11
https://github.com/yadifa/yadifa/issues/10
https://www.securityweek.com/dns-servers-crash-due-bind-security-flaw
https://www.securityweek.com/dns-servers-crash-due-bind-security-flaw
https://nlnetlabs.nl/projects/nsd/about/
https://github.com/NLnetLabs/nsd/tree/4043a5ab7be7abaec969011e48e4d0d60a0056a6
https://github.com/NLnetLabs/nsd/tree/4043a5ab7be7abaec969011e48e4d0d60a0056a6
https://github.com/NLnetLabs/nsd/tree/4043a5ab7be7abaec969011e48e4d0d60a0056a6
https://www.nlnetlabs.nl/documentation/nsd/nsd-checkzone/
https://www.nlnetlabs.nl/documentation/nsd/nsd-checkzone/
https://github.com/
https://en.wikipedia.org/wiki/Microsoft_DNS

[88] B. Neelakantan and S. V. Raghavan. Protocol
Conformance Testing — A Survey, pages 175–191.
Springer US, Boston, MA, 1995.

[89] NMAP Organization. Dns-fuzz.
https://nmap.org/nsedoc/scripts/dns-
fuzz.html.

[90] Javier Paris and Thomas Arts. Automatic testing
of tcp/ip implementations using quickcheck. In
Proceedings of the 8th ACM SIGPLAN Workshop on
ERLANG, ERLANG ’09, page 83–92, New York, NY,
USA, 2009. Association for Computing Machinery.

[91] Libor Peltan and Daniel Salzman. DNAME: synthe-
sized CNAME might be perfect answer to CNAME
query.
https://gitlab.nic.cz/knot/knot-dns/-/
merge_requests/1217.

[92] Libor Peltans. Nsd and knot discussion.
https://github.com/NLnetLabs/nsd/issues/
142#issuecomment-732753256.

[93] David A. Ramos and Dawson Engler. Under-
constrained symbolic execution: Correctness checking
for real code. In 24th USENIX Security Symposium
(USENIX Security 15), pages 49–64, Washington, D.C.,
August 2015. USENIX Association.

[94] Fahmida Y. Rashid. Isc updates critical dos bug in bind
dns software.
https://www.infoworld.com/article/3126472/
isc-updates-critical-dos-bug-in-bind-dns-
software.html, 2016.

[95] Andrew Reynolds, Jasmin Christian Blanchette, Simon
Cruanes, and Cesare Tinelli. Model finding for recur-
sive functions in smt. In Nicola Olivetti and Ashish
Tiwari, editors, Automated Reasoning, pages 133–151,
Cham, 2016. Springer International Publishing.

[96] Scott Rose and Wouter Wijngaards. DNAME
Redirection in the DNS. RFC 6672, June 2012.

[97] Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu,
Mashooq Muhaimen, and Ramesh K. Sitaraman.
Akamai dns: Providing authoritative answers to
the world’s queries. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 465–478, New York, NY,
USA, 2020. Association for Computing Machinery.

[98] Harsha Sharma, Wenfei Wu, and Bangwen Deng. Sym-
bolic execution for network functions with time-driven

logic. In 2020 28th International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), pages 1–8, 2020.

[99] Robert Swiecki and et al. Honggfuzz - security oriented
software fuzzer.
https://github.com/google/honggfuzz/tree/
master/examples/bind.

[100] Dmitriy Zaporozhets Sytse "Sid" Sijbrandij. Gitlab,
inc.
https://gitlab.com/.

[101] Peach Tech. Peach fuzzer platform.
peach.tech/products/peach-fuzzer/
peach.tech/products/peach-fuzzer/.

[102] Sam Trenholme. Maradns.
https://maradns.samiam.org/.
Code commit used: https://
github.com/samboy/MaraDNS/tree/
3ec477f227b2bf6947be8fbe8fd0ab73130227d0.

[103] Liam Tung. Azure global outage: Our dns update
mangled domain records, says microsoft.
https://www.zdnet.com/article/azure-global-
outage-our-dns-update-mangled-domain-
records-says-microsoft/, 2019.

[104] Margus Veanes, Colin Campbell, Wolfgang Grieskamp,
Wolfram Schulte, Nikolai Tillmann, and Lev Nachman-
son. Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer, pages 39–76. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[105] Jane Yen, Tamás Lévai, Qinyuan Ye, Xiang Ren,
Ramesh Govindan, and Barath Raghavan. Semi-
automated protocol disambiguation and code
generation. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page
272–286, New York, NY, USA, 2021. Association for
Computing Machinery.

[106] Dan York. Hbo now dnssec misconfiguration makes
site unavailable from comcast networks (fixed now).
https://www.internetsociety.org/blog/2015/
03/hbo-now-dnssec-misconfiguration-makes-
site-unavailable-from-comcast-networks-
fixed-now/.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 323

https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://gitlab.nic.cz/knot/knot-dns/-/merge_requests/1217
https://gitlab.nic.cz/knot/knot-dns/-/merge_requests/1217
https://github.com/NLnetLabs/nsd/issues/142#issuecomment-732753256
https://github.com/NLnetLabs/nsd/issues/142#issuecomment-732753256
https://www.infoworld.com/article/3126472/isc-updates-critical-dos-bug-in-bind-dns-software.html
https://www.infoworld.com/article/3126472/isc-updates-critical-dos-bug-in-bind-dns-software.html
https://www.infoworld.com/article/3126472/isc-updates-critical-dos-bug-in-bind-dns-software.html
https://github.com/google/honggfuzz/tree/master/examples/bind
https://github.com/google/honggfuzz/tree/master/examples/bind
https://gitlab.com/
peach.tech/products/peach-fuzzer/peach.tech/products/peach-fuzzer/
peach.tech/products/peach-fuzzer/peach.tech/products/peach-fuzzer/
https://maradns.samiam.org/
https://github.com/samboy/MaraDNS/tree/3ec477f227b2bf6947be8fbe8fd0ab73130227d0
https://github.com/samboy/MaraDNS/tree/3ec477f227b2bf6947be8fbe8fd0ab73130227d0
https://github.com/samboy/MaraDNS/tree/3ec477f227b2bf6947be8fbe8fd0ab73130227d0
https://www.zdnet.com/article/azure-global-outage-our-dns-update-mangled-domain-records-says-microsoft/
https://www.zdnet.com/article/azure-global-outage-our-dns-update-mangled-domain-records-says-microsoft/
https://www.zdnet.com/article/azure-global-outage-our-dns-update-mangled-domain-records-says-microsoft/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/

	Introduction
	Background And Motivation
	Overview of DNS
	Finding DNS Errors with Ferret

	Methodology
	SCALE Approach
	An Executable Model of DNS
	Generating Valid Zone Files
	Data Representation
	Handling Unbounded Data
	Generating Tests for Invalid Zone Files

	System Overview
	Results
	Testing Using Valid Zone Files
	Testing Using Invalid Zone Files
	Example Bugs
	Small-scope Property Validation

	Discussion
	Related Work
	Conclusion

