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Configuration errors remain a major cause of system failures and service outages. One promising approach
to identify configuration errors automatically is to learn common usage patterns (and anti-patterns) using
data-driven methods. However, existing data-driven learning approaches analyze only simple configurations
(e.g., those with no hierarchical structure), identify only simple types of issues (e.g., type errors), or require
extensive domain-specific tuning. In this paper, we present Diffy, the first push-button configuration analyzer
that detects likely bugs in structured configurations. From example configurations, Diffy learns a common
template, with “holes” that capture their variation. It then applies unsupervised learning to identify anomalous
template parameters as likely bugs. We evaluate Diffy on a large cloud provider’s wide-area network, an
operational 5G network testbed, and MySQL configurations, demonstrating its versatility, performance, and
accuracy. During Diffy’s development, it caught and prevented a bug in a configuration timer value that had
previously caused an outage for the cloud provider.
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1 INTRODUCTION
Ensuring the correct operation of software systems is critical to avoid downtime and performance
degradation. While many techniques exist to find bugs in software, increasingly systems are
built by assembling existing software artifacts whose behavior is customized through specialized
configuration languages [9, 10, 18, 27, 29, 31, 50, 51, 61]. For instance, routing protocols that control
how packets move across the Internet [50], application orchestration frameworks [18, 27] that
manage critical infrastructure, and databases backing popular web services [10] are all managed
through extensive configuration.
The increasing use of configuration to program systems has led to a commensurate rise in

misconfiguration-related outages [14, 42, 47, 49, 55, 56, 60]. Misconfigurations have taken every
major cloud provider offline [42, 55, 56], and are to blame for service outages across numerous
industries, including airlines, financial institutions, streaming and e-commerce services [60], and
social media [47]. In general, studies have frequently reported misconfigurations as a major source
of outages for large production systems [8, 22, 38, 43, 48, 57, 59].
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To combat misconfiguration, one line of research has explored the use of data-driven learning
methods to identify possible errors as anomalies or deviations from normal usage based on a
training corpus of example configurations [12, 51, 52, 61]. This approach is appealing because it
requires no effort from users to provide specifications of correctness, which may be difficult to
obtain or even unknown to the system operators [31].
While the prospect of automatically identifying configuration bugs without specifications is

alluring, current incarnations of this approach have several major limitations. First, a majority of
them [51, 52, 61] apply only to “flat” configurations whose format comprises a bag of key-value
string pairs. While useful in some simple settings, many configurations include richer structures
such as sets, lists, tables, maps, objects, or even specialized domain-specific languages (DSLs) [2, 31].
Second, prior work requires that users incorporate extensive domain-specific knowledge into their
tools. For instance, parts of configurations are frequently represented using ad hoc string data
formats. Existing tools typically identify bugs by checking if these strings conform to a set of
user-defined types (e.g., a file path, an IP address [31, 61] or that "ON" and "OFF" are boolean [51]).
As a result, they either learn little from data that does not conform to predefined types or require
that users arduously add such domain-specific knowledge.

In this paper, we present Diffy1, the first push-button approach to automatically find likely bugs
in arbitrary JSON configurations. We target the JSON [7] format due to its pervasive use in practice,
its ability to represent complex structure (e.g., nested lists and objects), and its ease of conversion
from other configuration formats (e.g., YAML, XML). While the focus of the paper is JSON, the
techniques we present are general and can apply to other hierarchically structured data formats.
Diffy requires no user specifications; its input includes only (1) a set of configuration files and (2)
an optional set of regular expression tokens to help guide its analysis. From these inputs Diffy
synthesizes a template, which is another JSON file that captures the similarities and differences
in the configurations. The template contains “holes” that, when filled in with specific values, will
recreate the original configurations. Using the synthesized template, Diffy then employs a state-of-
the-art unsupervised anomaly detection algorithm known as isolation forest [37] to identify likely
bugs in configurations as those with anomalous parameters for these “holes”.

At the core of Diffy’s approach is a novel template synthesis algorithm that attempts to extract
similarities between JSON configuration elements. For a given set of configurations, many valid
templates exist. Efficiently finding a “good” template, i.e., one that is neither too complex nor too
general, is challenging. We define a cost metric to approximate how well a template matches a set
of configurations, and then formulate the synthesis problem as a dynamic programming algorithm.
The algorithm is related to the idea of string edit distance, but instead finds the minimal regular-
expression-aware edit distance between strings. Diffy finds a template for other data structures,
e.g., lists of lists of strings, by recursively evaluating element template costs and selecting the most
suitable template type, such as ordered, unordered, or repetitive.
We assess Diffy against a variety of real configurations, including those from a large cloud

provider’s wide-area-network (WAN), an operational 5G radio access network (RAN), and MySQL
database configurations mined from GitHub. Our results show that Diffy: (1) Generalizes across
domains as the first automatic bug finder applicable to arbitrary JSON configurations. (2) Scales well,
analyzing thousands of configurations comprising millions of lines within seconds to a few minutes,
exhibits a near-linear scaling trend, and outperforms existing data mining tools by 2–3 orders of
magnitude. (3) Achieves high precision (up to 97% on the WAN and RAN). And (4) identifies issues
comparable to domain-specialized tools.

1Diffy finds iffy differences in configurations.
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During Diffy’s development, it automatically identified a bug in a protocol timer configuration
value that had previously caused a large outage for the cloud provider’s WAN and that was silently
reintroduced by faulty automation.

Contributions: In summary, this paper’s contributions are to:

• Define the problem of statistical bug finding for configurations in terms of synthesizing a
low-cost template to fit the configuration data.
• Solve the template synthesis problem with a novel dynamic programming formulation
based on the minimal regular-expression-aware string edit distance and then generalize this
approach to richer configuration structures.
• Employ unsupervised learning to identify the most likely bugs from configuration differences
based on the synthesized template.
• Implement Diffy based on these ideas, the first tool to automatically detect likely bugs in
arbitrary JSON configurations.
• Demonstrate the versatility, performance, and precision of Diffy on three diverse configura-
tion datasets (wide-area network, radio access network, and database).

2 OVERVIEW OF DIFFY
Consider the example configurations used to define networking policies for a wide-area network
(WAN) shown in Figure 1. For this example, we picked 48 different configuration files, one from
each router to provide to Diffy. These configurations are parsed from vendor-specific formats (e.g.,
Cisco [9], Juniper [29]), and define low-level settings for various routing protocols, access control
policies, queueing and performance, and more. In practice, these configurations are often several
tens of thousands of lines long, and thus not easily amenable to human review. For the sake of
exposition, we have highly simplified these configurations for the example.

Challenges for Diffy. Analyzing configuration files like for this WAN poses several challenges.
First, they make use of complex and domain-specific structure. Route policies (e.g., "Policy"), for
example, are defined using a domain-specific policy language for matching and modifying layer
3 protocol routes. These policies consist of nested JSON structures whose particular order, size,
and elements may or may not be semantically relevant depending on the context. For instance, the
order of the declared route length matches ("LenMatch") does not matter, while the order of the
"Actions" applied to the routes is important. Similarly, the policies are defined using nested objects
with different keys, some of which may be missing or intentionally different across configurations.
Existing data-driven methods cannot analyze such structure (see §7).
Second, an abundance of data exists in ad hoc data formats. For example, route policy actions

like autonomous system (AS) number prepending to routes (e.g., "prepend 65000 65000") and route
length filtering (e.g., "/12−/24" and "le 8") employ unconventional data formats that hinder existing
configuration bug finding tools. These tools will learn little to nothing from strings that do not
conform to a predefined set of types such as an integer, boolean, or a file path [36, 51, 52, 61]. In
theory, it is possible to enhance these tools by incorporating specialized parsers, types, and rules
tailored to specific domains. This is the approach taken by SelfStarter [31], which models domain-
specific concepts such as IP address octets and table reordering rules. However, incorporating such
information requires substantial human effort and engineering. Router vendors, as one example,
support thousands of distinct configuration parameters, presented in a variety of formats [9, 29].
Furthermore, this process needs to be repeated for each new configuration type that one aims to
analyze, thereby restricting the tool’s broad applicability.

Synthesizing templates. Diffy takes the configurations in Figure 1 as input, along with regular
expression tokens of interest. For the example, we include a single token describing a number
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{
"SnmpSourceInterface": "Management1",
"Policy": {

...
"LenMatch": [

"/12−/24",
"le 8"

]
"Actions": [

"prepend 65000 65000",
"accept"

]
},
"StaticRoutes": [

"10.1.2.0/24",
"10.3.191.0/24",

],
}

{
"SnmpSourceInterface": "Management1",
"Policy": {

...
"LenMatch": [

"/12−/24",
"le 8"

]
"Actions": [

"prepend 65000 65000",
"accept"

]
},
"StaticRoutes": [

"10.1.2.0/24",
"10.3.191.0/24",

],
}

{
"SnmpSourceInterface": "Management1",
"Policy": {

...
"LenMatch": [

"/12−/24",
"le 8"

]
"Actions": [

"prepend 65000 65000",
"accept"

]
},
"StaticRoutes": [

"10.1.2.0/24",
"10.3.191.0/24",

],
}

Example network configurations.

{
"SnmpSourceInterface": [

{"CASES": 3, "TEMPLATE": "Lo0"},
{"CASES": 45, "TEMPLATE": "Management1"},

],
"Policy": {

"LenMatch" ["@type:repeat", "/[num]−/24", "le [num]"]
"Actions": [

"@type:ordered",
{

"Pattern": "prepend 65000 [num]",
"Parameters": [{"65000": 43, "65001": 2, "2": 3}]

},
"accept"

]
},
"StaticRoutes": [

"@type:unordered",
"10.1.2.0/24",
{

"CASES": 3,
"TEMPLATE":
{

"Pattern": "10.3.19[num].0/24",
"Parameters": [{"1": 1, "2": 1, "3": 1}]

}
}

]
}

Synthesized lowest cost template.

value(/Policy/Actions[0]/param[0]) = "2"
choice(/SnmpSourceIface, "Lo0") = "true"
present(/StaticRoutes[1]) = "true"
... = ...

High confidence configuration bugs.

Fig. 1. Example of Diffy in use for anonymized and simplified configurations inspired by a wide-area network

(48 configurations in total). Top left shows example configuration snippets for WAN routers. Right shows the

synthesized template produced by Diffy. Bottom left shows the high confidence bugs flagged by Diffy.

[num] = "[0−9]+". Diffy synthesizes a template (right) based on these inputs. The synthesized
template is also a JSON file, but with “holes” that contain values that vary across the configurations.
For the SNMP source interface ("SnmpSourceIface") configuration segment, Diffy identifies a

“choice” template indicating that the value is either for a management ("Management1") or loopback
("Lo0") interface, with the former appearing in 45 out of 48 files. As there is no simple pattern to
combine these choices, they are left separate.
For the route length filters list ("LenMatch"), Diffy learns a "@type:repeat" template where all

the elements of the list are well summarized with one of two patterns: "/[num]−24" or "le [num]".
On the other hand, for the "StaticRoutes", Diffy identifies that the better template for these values
is an unordered multiset ("@type:unordered"). One element of the multiset is always "10.1.2.0/24"
while a second element is optional and only appears in three configurations. In those three, Diffy
has learned that the value of the second list element is "10.3.19[num].0/24" and that the value for
the “hole” is different for each configuration.
For the route policy actions ("Actions"), Diffy synthesizes an ordered sequence template

("@type:ordered") consisting of a prepend action followed by an "accept" action that permits the
route. Diffy also correctly learns the ad hoc data format for the action that prepends autonomous
system (AS) numbers to Border Gateway Protocol (BGP) routes as "prepend 65000 [num]", and
understands the values captured by each [num] token as well as their frequencies. In the example,
the value "65000" appears in 43 configurations, "65001" in two and "2" in three. Despite lacking
prior knowledge of Autonomous System (AS) path prepending, Diffy successfully extracts a helpful
pattern from the data to detect anomalies as we will see next.

Finding bugs with unsupervised learning. After synthesizing a configuration template, Diffy
employs unsupervised learning [37] to identify template parameter anomalies, which are shown
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for the example in the bottom left of Figure 1. The first anomaly captures that the value of the
0th parameter of the 0th list element in the "Actions" list template being "2" is a likely bug since
most configurations use value "65000" or "65001". Indeed this is a misconfiguration likely due to
different configuration vendors implementing different AS path prepending semantics. An operator
might have expected the second argument of the "prepend" action to mean how many times to
prepend the AS number 65000 (twice) to the BGP AS path, when instead the configuration expects a
space-separated list of AS numbers to prepend to the path. Such a mistake can cause other networks
to erroneously filter these routes, reducing Internet connectivity. In this case Diffy correctly marks
the more frequent "2" as an anomaly and not "65001" (another private AS number) because "2" is
more distant from other values. Diffy leverages a state-of-the-art anomaly detection algorithm
(§4) that is able to identify such anomalies and achieve consistently accurate detection results.

The second anomaly states that "SnmpSourceIface" has pattern "Lo0" instead of "Management1"2,
and the last anomaly indicates that only 3 out of the 48 configurations have a second static route.
Diffy reports all the anomalies with an anomaly likelihood score above a user-provided threshold.

Why it works and limitations. Diffyworks on the principle of “bugs as deviant behavior” [13]
where bugs are often easily identified as behavior that deviates from the normal. Template synthesis
and unsupervised learning go hand-in-hand to identify only the most likely bugs and thereby
reduce false positives. Synthesized templates, even when imperfect, concisely summarize all the
differences across the configurations and unsupervised learning effectively sifts through these
differences to find the most likely bugs while filtering noise. For instance, in the three configurations
that have a second static route, the pattern learned for the route is "10.3.19[num].0/24". However,
since the value for the “hole” is different in each configuration and the evidence (3 examples) is
low, the unsupervised learning algorithm marks these differences as unlikely to be bugs and filters
them out. In this way, Diffy often avoids reporting intentional differences as bugs.
Diffy requires the existence of configurations with at least some overlap to be effective as

configurations with no similarity provide little opportunity for learning. Diffy also currently
limits its analysis to bugs that are identified as deviations in single template parameters. Finding
multi-parameter relationships, e.g., if setting 1 is "true" then setting 2 must not be "0", is outside
the scope of our approach, and we leave it to future work to efficiently learn such relationships.

3 TEMPLATE SYNTHESIS
In this section, we describe the format for configurations and templates (§3.1), explain how Diffy
defines costs for templates, show how it efficiently synthesizes low-cost string templates (§3.4),
and lift this idea to JSON lists and objects (§3.5, §3.6).

3.1 Configuration and Template Syntax
Table 1. Example regular expressions.

Example Tokens

[any] = ".∗"
[float] = "[0−9]+\.[0−9]+"
[num] = "[0−9]+"
[alpha] = "[a−zA−Z]+"
[path] = ".∗/.∗"
[upper] = "[A−Z]+"
[hex] = "[a−fA−F0−9]+"

Before we can explain how Diffy computes a template like
that in Figure 1, we must first define the input format and tem-
plate syntax. A summary of the JSON, template, and anomaly
syntax are illustrated in Figure 2. Diffy processes configu-
rations in JSON format [7], defined as a JSON node 𝑛. Specif-
ically, a JSON node is either a string 𝑠 , a list of JSON nodes
[𝑛1, . . . , 𝑛𝑘], or an object of unordered key-value pairs with
string keys and JSON node values {𝑠1:𝑛1, . . . , 𝑠𝑘 :𝑛𝑘 }. Although
JSON has other types of values such as booleans, integers,

2In this example, network operators confirmed that indeed a few SNMP source interfaces were mistakenly set as loopback
interfaces in the configurations and they should not be originating SNMP messages.
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𝑠 ∈ Σ∗, 𝑟 ∈ R, ℓ ∈ Label definitions

𝑛 ::= 𝑠 json string

| [𝑛1, . . . , 𝑛𝑘] json list

| {𝑠1: 𝑛1, . . . , 𝑠𝑘 : 𝑛𝑘 } json object

𝑒 ::= value(ℓ) identity expr

| integer(ℓ) is integer expr

| length(ℓ) length expr

| pow2(ℓ) power of 2 expr

| present(ℓ) is present expr

| choice(ℓ,𝜏) choice expr

𝜏 ::= 𝜌ℓ labeled template

𝜌 ::= 𝑠 const string

| 𝑟 regex token

| 𝜏∗ repeat template

| 𝜏? optional template

| 𝜏1 · . . . · 𝜏𝑘 concatenation

| [𝜏1, . . . , 𝜏𝑘] ordered seq

| {𝜏1, . . . , 𝜏𝑘 } unordered set

| (𝜏1 | . . . | 𝜏𝑘) choice template

| {𝑠1: 𝜏1, . . . , 𝑠𝑘 : 𝜏𝑘 } object template

Fig. 2. Configuration JSON and template abstract syntax.

and a special null value, we convert every base value to a string, e.g., 1.2 becomes "1.2", to simplify
the algorithm. Despite this simplification, Diffy still finds bugs in numeric values (see §6).
A labeled template 𝜏 = 𝜌ℓ consists of a template 𝜌 as well as a unique label ℓ that we use to

reference 𝜌 . The template may be a constant string 𝑠 , a regular expression token 𝑟 such as those
in Table 1, or a concatenation of sub-templates (𝜏1 · . . . · 𝜏𝑘 ). For example, "/[num]−/24" from the
example is a concatenation of "/" · [num] · "−/24". Templates for lists may be unordered multisets
{𝜏1, . . . , 𝜏𝑘 }, ordered sequences [𝜏1, . . . , 𝜏𝑘] or repetitions of a sub-template 𝜏∗. An optional template
𝜏? describes element that may be present or absent. Object templates consist of key-value pairs
{𝑠1 : 𝜏1, . . . , 𝑠𝑘 : 𝜏𝑘 }. A choice template (𝜏1 | . . . | 𝜏𝑘) signifies a case split, where a configuration
will match any of 𝜏1 through 𝜏𝑘 , useful for representing sets of configuration that correspond to
distinct patterns. Finally, 𝑒 defines expressions over configuration values captured by template
labels (e.g., ℓ) that are used to identify anomalies.

Example templates: Going back to Figure 1, we can write the template presented in JSON more
formally. The following synthesized template is for the "LenMatch" field from Figure 1:

((("/"𝑎 · [num]𝑏 · "−/24"𝑐)𝑑 | ("le "𝑒 · [num]𝑓 )𝑔)ℎ)∗𝑖
That is, the field represents a sequence (list) of zero or more elements, where each element is
described by a choice of either of the two patterns. The labels a through i identify the sub-templates.

As another example, consider the "Actions" field for the route policy. The synthesized template
consists of an ordered sequence of two sub-templates:

[("prepend 100 "𝑎 · [num]𝑏)𝑐 , "accept"𝑑]𝑒

Each subtemplate in Diffy has a unique label to allow for writing expressions over configuration
values by referencing one or more labels. The expression in Figure 1 states that the value captured
by b is unlikely to be "2", or (value(b) = "2") is an anomaly. This approach is general and permits
expressions involving multiple parameters, such as length(d) < value(b), or even the entire string
with c. Expressions transform configuration values to reveal anomalies. For example, the values
"1", "2", "3", "Z" for some label x may not appear anomalous as strings, but when evaluated over
the function integer(x), the string "Z" becomes anomalous.

As a final example, the "StaticRoutes" field is an unordered list template where one of the fields
is optional, and is expressed with the following template:

{"10.1.2.0/24"𝑎, ("10.3.19"𝑏 · [num]𝑐 · ".0/24"𝑑)?𝑒 }𝑓
The expression present(e) from Figure 1 maps the optional value to a boolean representing whether
e is present in a configuration. Since most configurations do not have the second static route, those
with result "true" are flagged as potential bugs. We elaborate on this idea in §4.

For the remainder of the paper, we sometimes elide the labels from templates for readability.
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3.2 Preliminaries
We write the set of all JSON nodes as Node. For 𝑛 ∈ Node, we use |𝑛 | to refer to the length of 𝑛.
For a string 𝑠 , |𝑠 | is the length of 𝑠 . For lists and objects |[𝑛1, . . . , 𝑛𝑖]| = |{𝑠1 : 𝑛1, . . . , 𝑠𝑖 : 𝑛𝑖 }| = 𝑖 .
Given a template 𝜏 = 𝜌ℓ , we define L(𝜏) = ℓ as the label for the template. For a set 𝑆 , the notation
{{𝑆}} refers to the set of all multisets over elements of 𝑆 . For a regex 𝑟 ∈ R and a string 𝑠 ∈ Node,
we write 𝑠 ∼ 𝑟 to mean that 𝑠 is in the language of 𝑟 .

To make the synthesis problem more tractable, we do not allow choice templates to be used
within a concatenation template. For instance, "abc" · ([num] | "d") is not allowed, while ("abc" ·
[num])|"abcd" is. This restriction reduces the search space without loss of generality. We similarly
assume that nested choice templates are flattened, e.g. 𝜏1|(𝜏2|𝜏3) is written as (𝜏1|𝜏2|𝜏3).
The template synthesis problem inputs include (1) 𝑘 JSON nodes (configurations), (2) a set of

regular expressions R, and (3) a cost function C : R → R that assigns a cost C(𝑟 ) to every character
of a string matched by 𝑟 ∈ R. We assume that 0 ≤ C(𝑟 ) ≤ 1. Typically one should define C(𝑟 )
proportionally to the sparsity of the regular expression, i.e., regular expressions that match fewer
strings should have lower (better) cost since they are more specific. For instance, [num] should have
lower cost than an identifier token [a−zA−Z0−9]+ since this would prioritize matching numbers over
identifiers when the text is all digits. To ensure a template always exists, we assume that a default
regular expression [any] ∈ R matches all strings, and that C([any]) = 1.

3.3 Template Cost Function
There are many templates that can represent a given set of configurations. The goal is to find a
template that balances generality and complexity. For example, several templates could represent the
strings "Eth1", "Eth2", and "Eth3". The token [any] covers all three strings but is perhaps too broad
because it matches all other strings as well. Alternatively, the template ("Eth1" | "Eth2" | "Eth3")
precisely captures only those three strings but is complex and likely overfits the data. In this case,
a compromise such as "Eth" · [num] strikes a balance between conciseness and specificity.
To synthesize desirable templates, we clearly need a way to compare templates. We do so by

defining a heuristic template cost function that gives a direct measure of the “quality” of a template.
This cost function is inspired by the Minimum Description Length Principle [16] where the cost
of a template is related to the amount of data that one would need to transmit to recreate a
template’s configurations. The cost function is designed to return a normalized score between 0
(best) and 1 (worst) and lends itself to a natural and efficient synthesis algorithm based on dynamic
programming. In this way, Diffy avoids an enumerative search over templates, such as those used
in prior data mining tools [21, 45, 46], and scales to large real-world configurations (§6.3).

Cost of string templates.We define a heuristic cost function for templates in Figure 3. The cost
function C has three arguments: a template instantiation function 𝑇 , the number of configurations
𝑘 , and the template itself 𝜏 . The cost function C returns a value in 𝑣 ∈ R such that 0 ≤ 𝑣 ≤ 1. The
template instantiation function 𝑇 : L × N→ {{Node}} takes a pair of a template label ℓ ∈ L and a
configuration index 𝑖 ∈ N such that 1 ≤ 𝑖 ≤ 𝑘 and returns a multiset of JSON nodes representing
the matches for the template for configuration 𝑖 . The function 𝑇 essentially “fills in” the concrete
values for each configuration for each sub-template.

For strings, the cost definitions are simple—the normalized cost for a constant string (const-cost)
is 0 (ideal), and the normalized cost for a regular expression template 𝑟 (regex-cost) is given by the
per-character cost C(𝑟 ). For a concatenation of templates 𝜏1 · . . . · 𝜏 𝑗 , we compute the normalized
cost (concat-cost) for each 𝜏𝑖 as C(𝑇, 𝑘, 𝜏𝑖 ) and then multiply this cost by the length of the strings
matched by each template S(𝑇, 𝑘,L(𝜏𝑖 )). This value is then re-normalized by dividing by the total
length of the matched strings for each template

∑𝑗

𝑖=1 S(𝑇, 𝑘,L(𝜏𝑖 )).
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C(𝑇, 𝑘, 𝑠ℓ ) ≜ 0 (const-cost)
C(𝑇, 𝑘, 𝑟ℓ ) ≜ C(𝑟 ) (regex-cost)

C(𝑇, 𝑘, (𝜏1 · . . . · 𝜏 𝑗 )ℓ ) ≜
∑𝑗

𝑖=1 S(𝑇,𝑘,L(𝜏𝑖 ) ) ·C (𝑇,𝑘,𝜏𝑖 )∑𝑗

𝑖=1 S(𝑇,𝑘,L(𝜏𝑖 ) )
(concat-cost)

C(𝑇, 𝑘, (𝜏1| . . . |𝜏 𝑗 )ℓ ) ≜ ®C(𝑇, 𝑘, ℓ, 1,N(𝑇, 𝑘, ℓ), 𝜏1 · · · 𝜏 𝑗 ) (choice-cost)
C(𝑇, 𝑘, ((𝜏1| . . . |𝜏 𝑗 )ℓ ′ )∗ℓ ) ≜ ®C(𝑇, 𝑘, ℓ, 1,S(𝑇, 𝑘, ℓ2), 𝜏1 · · · 𝜏 𝑗 ) (repeat-cost)
C(𝑇, 𝑘, [𝜏1, . . . , 𝜏 𝑗]ℓ ) ≜ ®C(𝑇, 𝑘, ℓ,M(𝑇, 𝑘, ℓ),S(𝑇, 𝑘, ℓ), 𝜏1 · · · 𝜏 𝑗 ) (ord-cost)
C(𝑇, 𝑘, {𝜏1, . . . , 𝜏 𝑗 }ℓ ) ≜ ®C(𝑇, 𝑘, ℓ,M(𝑇, 𝑘, ℓ),S(𝑇, 𝑘, ℓ), 𝜏1 · · · 𝜏 𝑗 ) (unord-cost)
C(𝑇, 𝑘, {𝑠1 : 𝜏1, . . . , 𝑠 𝑗 : 𝜏 𝑗 }ℓ ) ≜ ®C(𝑇, 𝑘, ℓ,M(𝑇, 𝑘, ℓ),S(𝑇, 𝑘, ℓ), 𝜏1 · · · 𝜏 𝑗 ) (object-cost)
C(𝑇, 𝑘, (𝜏?)ℓ ) ≜ C(𝑇, 𝑘, 𝜏) (option-cost)

®C(𝑇, 𝑘, ℓ, 𝜆,𝛾, 𝜏1 · · · 𝜏 𝑗 ) ≜ 1 −
(∑𝑗

𝑖=1 (1−C(𝑇,𝑘,𝜏𝑖 ) ) ·N(𝑇,𝑘,L(𝜏𝑖 ) )
𝑗 ·N (𝑇,𝑘,ℓ )

)
·
(
𝛾− 𝑗
𝛾−𝜆

)
(seq-cost)

S(𝑇, 𝑘, ℓ) ≜
∑𝑘

𝑖=1
∑

𝑛∈𝑇 (ℓ,𝑖 ) |𝑛 | (total-length)
N(𝑇, 𝑘, ℓ) ≜

∑𝑘
𝑖=1 |𝑇 (ℓ, 𝑖) | (node-count)

M(𝑇, 𝑘, ℓ) ≜ max1≤𝑖≤𝑘 max𝑛∈𝑇 (ℓ,𝑖 ) |𝑛 | (max-length)

Fig. 3. Definition of a template cost C given 𝑘 JSON configurations and a template instantiation function 𝑇 .

Example: Consider the template 𝜏 = ("Eth"𝑎 · [num]𝑏)𝑐 that matches strings "Eth12" and "Eth8".
Assume we have C([𝑛𝑢𝑚]) = 1

5 (this exact value is used for illustrative purposes only). The number
of configurations 𝑘 = 2 and template instantiation:

𝑇 (𝑎, 1) = 𝑇 (𝑎, 2) = {"Eth"} 𝑇 (𝑏, 1) = {"12"} 𝑇 (𝑏, 2) = {"8"}
𝑇 (𝑐, 1) = {"Eth12"} 𝑇 (𝑐, 2) = {"Eth8"}

To compute the cost of 𝜏 we first compute the cost of "Eth"𝑎 and [num]𝑏 , which are 0 and 1
5

respectively. We then compute the cost of the concatenation as:
0 · ( |"Eth"| + |"Eth"|) + 1

5 · ( |"12"| + |"8"|)
|"Eth"| + |"Eth"| + |"12"| + |"8"| =

1
15

Cost of other templates. Intuitively, the cost for lists and object templates should be related to
the costs of their respective elements. However, this is not enough. Elements of a list or set may be
missing from some configurations (due to optional elements 𝜏?) or the template may require more
or fewer cases to describe the content. For instance, the templates ["Eth1", "Eth2"?, "Eth3"?] and
("Eth" · [num])∗ both describe lists, yet the latter may be preferred due to its simplicity.

Figure 3 defines our cost function for ordered (ord-cost), unordered (unord-cost), repeat
(repeat-cost), choice (choice-cost), and object (object-cost) templates in a similar manner. All
of them evaluate the cost of a sequence of templates 𝜏1 · · · 𝜏 𝑗 using ®C. The function ®C takes the
label of callee template ℓ as well as a lower bound 𝜆 and upper bound 𝛾 on the number of template
elements possible for the sequence given the configurations. For each template in the sequence
𝜏𝑖 , we compute the inverse cost, or “benefit”, (1 − C(𝑇, 𝑘, 𝜏𝑖 )). Each element is then scaled by the
fraction of configurations with that element present relative to those in scope N(𝑇,𝑘,L(𝜏𝑖 ) )N(𝑇,𝑘,ℓ ) and we
divide the result by 𝑗 to calculate the average benefit. To penalize more complex (longer) templates,
we scale the result by 𝛾− 𝑗

𝛾−𝜆 , which represents the proximity of the template to the minimal possible
length compared to the maximum. The final value represents the “benefit” of the template, and 1
minus this value gives the normalized cost.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 155. Publication date: June 2024.



Diffy: Data-Driven Bug Finding for Configurations 155:9

For ordered, unordered, and object templates, 𝜆 is set to M(𝑇, 𝑘, ℓ) the maximum concrete
list or object size, and the 𝛾 is set to S(𝑇, 𝑘, ℓ) the total number list or key elements across all
configurations (if all elements required a unique template). For a repeat template, we set 𝜆 = 1 since
a single pattern could describe all list elements, and set the same value for 𝛾 . A choice template has
𝜆 = 1 and 𝛾 = N(𝑇, 𝑘, ℓ) as the number of configurations in scope.
Example: Consider two JSON lists ["Eth1", "Eth2"] and ["Eth2", "Eth3"]. Many templates

describe these lists. For instance, the ordered template [("Eth1"𝑎)?𝑏, "Eth2"𝑐 , ("Eth3"𝑑)?𝑒]𝑓 . In
this case we have the template instantiation function 𝑇 defined as:

𝑇 (𝑎, 1) = 𝑇 (𝑏, 1) = {"Eth1"} 𝑇 (𝑎, 2) = 𝑇 (𝑏, 2) = ∅ 𝑇 (𝑐, 1) = 𝑇 (𝑐, 2) = {"Eth2"}
𝑇 (𝑑, 1) = 𝑇 (𝑒, 1) = ∅ 𝑇 (𝑑, 2) = 𝑇 (𝑒, 2) = {"Eth3"}

𝑇 (𝑓 , 1) = {["Eth1", "Eth2"]} 𝑇 (𝑓 , 2) = {["Eth2", "Eth3"]}

The cost of the template is given by (ord-cost), which computes ®C with 𝜆 =M(𝑇, 𝑘, 𝑓 ) = 2 (the
largest list size) and 𝛾 = S(𝑇, 𝑘, 𝑓 ) = 4 (the total number of elements). Recursively computing each
subtemplate (b, c, e) results in cost 0, and now we calculate the cost as:

1 −
(
1·N (𝑇,𝑘,𝑏 )+1·N (𝑇,𝑘,𝑐 )+1·N (𝑇,𝑘,𝑒 )

3·N (𝑇,𝑘,𝑓 )

)
·
( 4−3
4−2

)
= 1 −

( 1·1+1·2+1·1
3·4

)
·
( 1
2
)
= 5

6

In this case, the template cost is high because (1) labels b and e only match elements in half of the
configurations and (2) the template consists of 3 list elements rather than the minimal 2 possible
for the unordered type.

Now consider another template that also matches the same two lists: ("Eth"𝑎 · [num]𝑏)𝑐 ∗𝑑 again
with C([num]) = 1

5 . For this template, we have the instantiation function 𝑇 is defined as:

𝑇 (𝑎, 1) = 𝑇 (𝑎, 2) = {"Eth", "Eth"} 𝑇 (𝑏, 1) = {"1", "2"} 𝑇 (𝑏, 2) = {"2", "3"}
𝑇 (𝑐, 1) = {"Eth1", "Eth2"} 𝑇 (𝑐, 2) = {"Eth2", "Eth3"}

𝑇 (𝑑, 1) = {["Eth1", "Eth2"]} 𝑇 (𝑑, 2) = {["Eth2", "Eth3"]}

This time, we compute the cost according to (repeat-cost), which uses ®C with 𝜆 = 1 and
𝛾 = S(𝑇, 𝑘, 𝑑) = 4. The cost C(𝑇, 𝑘, ("Eth"𝑎 · [num]𝑏)𝑐 ) = 1

20 , and now we calculate:

1 −
( 19

20 ·N (𝑇,𝑘,𝑐 )
1·N (𝑇,𝑘,𝑑 )

)
·
( 4−1
4−1

)
= 1 −

( 19
20 ·4
4

)
= 1

20

In this case, the repeat template has substantially lower cost than the unordered template because
a single pattern captures every element of both lists.

3.4 String Template Synthesis
To efficiently synthesize a low-cost template for a collection of JSON nodes, we first solve the
simpler problem of synthesizing a template for a collection of strings (i.e., the base case). We then
lift this approach to lists and objects in §3.5. To synthesize string templates efficiently, Diffy uses a
dynamic programming approach to identify a low-cost union of concatenations of templates that
match the set 𝑆 . To further simplify the problem, the algorithm takes two string templates as input
and produces a new lowest-cost template that combines these templates. We begin by computing
the lowest-cost template for the initial two strings in 𝑠1, 𝑠2 ∈ 𝑆 and then iteratively combine the
resulting template with subsequent strings in 𝑆 until none remain.
We assume all string templates are a sequence of either regex tokens 𝑟 , or constant string

templates of size 1 (e.g., "10" is converted to "1" · "0"). If the first string template is given as the
concatenation (𝜏11 · · · 𝜏1𝑚) and the second template is (𝜏21 · · · 𝜏2𝑛), then we can calculate the lowest
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cost template 𝜏 that combines (𝜏11 · · · 𝜏1𝑖 ) and (𝜏21 · · · 𝜏2𝑗 ) through the dynamic programming cost
function D(𝑇, 𝑘, 𝑖, 𝑗) defined through the recurrence:

D(𝑇, 𝑘, 𝑖, 𝑗) =

min



0.0 if 𝑖, 𝑗 = 0
D(𝑇, 𝑘, 𝑖 − 1, 𝑗 − 1) + C(𝑇, 𝑘, 𝜏1

𝑖
) · S(𝑇, 𝑘,L(𝜏1

𝑖
))

+ C(𝑇, 𝑘, 𝜏2
𝑗
) · S(𝑇, 𝑘,L(𝜏2

𝑗
)) if 𝜏1

𝑖
= 𝜏2

𝑗

D(𝑇, 𝑘, 𝑎 − 1, 𝑗) + C(𝑟 ) ·∑𝑖
𝑘=𝑎
S(𝑇, 𝑘,L(𝜏1

𝑘
)) if 𝑟 ∈ R, "" ∼ 𝑟, 𝑎 ∈ I(𝑟, 𝜏11 · · · 𝜏

1
𝑖
)

D(𝑇, 𝑘, 𝑖, 𝑏 − 1) + C(𝑟 ) ·∑𝑗

𝑘=𝑏
S(𝑇, 𝑘,L(𝜏2

𝑘
)) if 𝑟 ∈ R, "" ∼ 𝑟, 𝑏 ∈ I(𝑟, 𝜏21 · · · 𝜏

2
𝑗
)

D(𝑇, 𝑘, 𝑎 − 1, 𝑏 − 1) + C(𝑟 ) ·∑𝑖
𝑘=𝑎
S(𝑇, 𝑘,L(𝜏1

𝑘
))

+ C(𝑟 ) ·∑𝑗

𝑘=𝑏
S(𝑇, 𝑘,L(𝜏2

𝑘
)) if 𝑟 ∈ R, 𝑎 ∈ I(𝑟, 𝜏11 · · · 𝜏

1
𝑖
), 𝑏 ∈ I(𝑟, 𝜏21 · · · 𝜏

2
𝑗
)

This definition takes the current template instantiation function𝑇 and number of configurations
analyzed so far 𝑘 (initially 𝑘 = 2). The best template has (un-normalized) cost D(𝑇, 𝑘,𝑚, 𝑛). The
cost is initially 0.0 and is then updated recursively in two main scenarios. When both sequences
have the same next template the previous cost D(𝑇, 𝑘, 𝑖 − 1, 𝑗 − 1), is updated by the normalized
costs of the matched 𝑖th and 𝑗 th templates times the number of characters matched by each. All other
cases involve a “backwards jump” using regex tokens. For a token 𝑟 ∈ R, we consider all indices
𝑎 and 𝑏 such that 𝑟 matches the sub-sequences 𝜏1𝑎 · · · 𝜏1𝑖 and 𝜏2

𝑏
· · · 𝜏2𝑗 . This logic is represented

by an index match function I, which is implemented efficiently using automata. For instance,
I([num],"1" · [num]) = {1, 2}. That is, the sub-sequence starting at index 1 ("1" · [num]) matches
𝑟 = [num], since concatenating two numbers remains a number, and from index 2 ([num]) also
matches [num]. We discuss the details of I later. In this case, there is a “diagonal” jump, and the
lowest cost is updated from D(𝑇, 𝑘, 𝑎 − 1, 𝑏 − 1) by adding the regex cost C(𝑟 ) for each character
matched by the regex. If token 𝑟 matches an empty string ("" ∼ 𝑟 ) then we can also jump backwards
only in a horizontal (1st case) or vertical direction (2nd case).
Example: We illustrate the concept with an example in Figure 4, where we determine the least

cost template matching strings that represent memory sizes: "10M", "15M", and "200" (uses a default
size). We use two tokens, [num] and a file path [path], both with C(𝑟 ) = 1

5 . We first compute the
minimum cost template for ("1"𝑎 · "0"𝑏 · "M"𝑐) and ("1"𝑑 · "5"𝑒 · "M"𝑓 ). Figure 4’s part 2 displays
the dynamic programming table that memoizes D(𝑇, 2, 𝑖, 𝑗) values, where initially:
𝑇 (𝑎, 1) = {"1"} 𝑇 (𝑏, 1) = {"0"} 𝑇 (𝑐, 1) = {"M"} 𝑇 (𝑑, 2) = {"1"} 𝑇 (𝑒, 2) = {"5"} 𝑇 (𝑓 , 2) = {"M"}

and is ∅ otherwise. By retracing the table from the bottom right corner to the top left corner (𝑖 = 0,
𝑗 = 0) and identifying the lowest cost case at each step, we retrieve the lowest cost pattern. The
new template is "1"𝑔 · [num]ℎ · "M"𝑖 with fresh labels, and we update 𝑇 according to the match, i.e.,
𝑇 (ℎ, 1) = {"0"} and 𝑇 (ℎ, 2) = {"5"} and so on.

We then repeat this process with ("1" · [num] · "M") and ("2" · "0" · "0") and again display the
dynamic programming table for D(𝑇, 3, 𝑖, 𝑗). Eventually, the algorithm finds that the lowest cost
template involves a "backwards jump" from 𝑖 = 2, 𝑗 = 3 to 𝑖 = 0, 𝑗 = 0 using the [num] token, which
matches both "200" and "1" · [num]. Lastly, the [any] token matches the final "M" template without
consuming any characters from "200", resulting in the final template [num] · [any] , where [num]
captures the memory size and [any] captures the optional memory unit (e.g., megabytes).

Calculating index matches. In Figure 4, Diffymust compute I. The algorithm must know, for
instance, that "1" ·[num] matches [num] since 1 ∈ I([num],"1" ·[num]). Similarly, that I([num],"1" ·
[num] · "M") = ∅ since any string ending with "M" is not a number. To calculate I one could check
for language containment (e.g., the language of "1" · [num] is a subset of the language of [num]).
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𝑞0start 𝑞1

𝑞2

['0'−'9']

[char(0)−'0')
('9'−char(256)]

[char(0)−char(256)]

['0'−'9']

State machine for regex [num] = "[0−9]+".

𝑞3start 𝑞4
['/'−'/']

[char(0)−'/')
('/'−char(256)] [char(0)−char(256)]

State machine for regex [path] = ".∗/.∗".

"1" "0" "M"

0.0 1.0 2.0 3.0

"1" 1.0 0.0 0.6 1.6

"5" 2.0 0.6 0.4 1.4

"M" 3.0 1.6 1.4 0.4

D(𝑇, 2, 𝑖, 𝑗) synthesizes ("1" · [num] · "M")

"2" "0" "0"

0.0 1.0 2.0 3.0

"1" 2.0 0.6 0.8 1.0

[num] 4.0 1.0 1.2 1.4

"M" 6.0 3.0 3.2 3.4

D(𝑇, 3, 𝑖, 𝑗) synthesizes ([num] · [any])

"1" [num] "M"
{q1} ↦→ {1} {q1} ↦→ {1, 2} {q2} ↦→ {1,2,3}

Index state table for "1" · [num] · "M" for token [num].

"1" [num] "M"
{q3} ↦→ {1} {q3} ↦→ {1,2} {q3} ↦→ {1,2,3}

Index state table for "1" · [num] · "M" for token [path].

[num]

M

[num]

1

[any]

1 2

3

Fig. 4. Diffy’s string template synthesis algorithm for strings "10M", "15M", and "200" using regular expres-

sion tokens for numbers [num] = "[0−9]+" and file paths [path] = ".∗/.∗" with cost
1
5 . The algorithm has

three steps: 1 constructing DFAs for each token, 2 synthesizing a template using dynamic programming,

and 3 tracking automaton states in index tables. The table entries can either have an exact match with zero

cost or jump backward by matching a regex token. An index entry, such as {q3} ↦→ {1,2} at [num] for token

[path], signifies that the substring starting at index 1 or 2 and ending at [num] leads to {𝑞3} in the FSM

of [path]. Since 𝑞3 is not a final state it does not match either substring. The final path through the table

results in pattern "1" · [num] · "M" before being adjusting to [num] · [any] for the third string.

However, this approach is far too slow in practice because it calculates I for every regex 𝑟 and for
every pair of indices, resulting in O(𝑚2 + 𝑛2) expensive language containment checks.
Instead, we efficiently compute I for every substring simultaneously by tracking possible

automaton states for each end index, as depicted in Figure 4 (part 3 ). For template "1" · [num] · "M",
the algorithm begins at state 𝑞0 of the [num] automaton and transitions to state 𝑞1 after processing
"1". Since this is an accepting state, "1" matches [num]. Similarly, "1" · [num] matches [num] since
transitioning from state 𝑞1 upon seeing a [num], we must remain in state 𝑞1. However, "1" ·[num] ·"M"
will end with "M" (𝑞2 state), not matching [num]. Simulating a state machine for a token is done
using a product automata construction, and we discuss the details for this algorithm in Appendix B
for space reasons. This method enables near-linear time token substring matching.

Choice string templates. Whenever the normalized template cost exceeds a threshold (0.5 by
default), we create a new template. When evaluating new strings, the algorithm compares them to
existing choices and selects the one with the lowest cost. For example, naive synthesis for strings
"true", "false", and "True" produces template [any] · "e", with high cost. Instead, because the
normalized cost for the template for "true" and "false" exceeds 0.5, we create a choice template.
Comparing "True" to both "true" and "false", the former offers a lower-cost match. Thus, the final
template is ([any] · "rue" | "false")

While the choice of threshold may seem arbitrary, we show in §6.4 thatDiffy’s ability to correctly
identify bugs is fairly insensitive to the value of this threshold.
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[

[

"le 16" "/20−/24"

"/16−/24"

"/30−/32"

"le 8"

]

]

"/" · [num] · "−/24"
cost=.06

[any] · "16" · [any]
cost=.66

"/" · [num] · "−/" · [num]
cost=.11

[
"@type:ordered",
{"CASES": 1, "TEMPLATE": "le 16"},
"/[num]−/24",
{"CASES": 1, "TEMPLATE": "/30−/32"},
{"CASES": 1, "TEMPLATE": "le 8"},

]

[

[

"le 16" "/20−/24"

"/16−/24"

"/30−/32"

"le 8"

]

]

"/" · [num] · "−/24"
cost=.06

"le " · [num]
cost=.07

[any] · [num]
cost=.78

[any] · "16" · [any]
cost=.66

[
"@type:unordered",
"le [num]",
"/[num]−/24",
{"CASES": 1, "TEMPLATE": "/30−/32"},

]

"le 16" "/20−/24" "/30−/32" "/16−/24" "le 8"
[any] · [num] · [any] · [num]

cost=.60

"le 16"

"/20−/24"

"/30−/32" "/16−/24" "le 8"

[any] · [num] · [any] · [num]
cost=.60

"/" · [num] · "0−/" · [num]
cost=.09

"le 16"

"/" · [num] · "0−/" · [num]

"/16−/24" "le 8"

[any] · [num] · [any] · [num]
cost=.60

"/" · [num] · "−/" · [num]
cost=.11

"le 16"

"/" · [num] · "−/" · [num]

"le 8"

"le " · [num]
cost=.07

[any] · [num]
cost=.78

Each list element is
repeatedly compared to
each of a set of patterns.

[
"@type:repeat−one−of",
"/[num]−/[num]",
"le [num]",

]

Fig. 5. How Diffy calculates a list template, for input lists ["le 16", "/20−/24", "/30−/32"] and

["/16−/24", "le 8"]. The ordered template (top) is determined using sequence alignment [53], where

the pairwise element cost is the string template cost. The grey rectangles represent unmatched elements. The

first element of the list on the bottom ("/16−/24") is matched with the second element of the list on the top

("/20−/24"), and other possible matches not used are greyed out due to their higher costs. The unordered

template (middle) is from the lowest-cost matching of elements – i.e., finding the pairs of elements in each list

that should be matched together to produce the lowest total cost. The solid lines show the chosen matches,

and the dashed lines show some of the matches that were not selected. Finally, Diffy finds the minimum cost

repeat template (bottom) by comparing each list element with an accumulated set of patterns.

Complexity. Given two string templates with lengths𝑚 and 𝑛, computing D has worst case
complexity O(|R| ·𝑚2 ·𝑛2) in the event that each regular expression 𝑟 ∈ R matches every substring.
The quadratic terms exist because, for each element in the table, each regex could potentially
match𝑚 · 𝑛 substrings and Diffy must compare every such match to find the one with the lowest
cost. In the best-case, the algorithm must do work proportional to |R | ·𝑚 · 𝑛 because it must “fill
in” every element of the dynamic programming table similar to the standard string edit distance
algorithm. We discuss the optimizations we use to mitigate this worst-case complexity and achieve
performance closer to the best case in practice in §5.

3.5 List Template Synthesis
To synthesize a template for two JSON lists, Diffy recursively computes the lowest-cost templates
for every pair of list elements. There are three template types: ordered list [𝜏1, . . . , 𝜏𝑘], unordered
list {𝜏1, . . . , 𝜏𝑘 }, and repetition 𝜏∗. Diffy calculates the best template for each type and selects the
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one with the lowest cost. Figure 5 illustrates the computation of a list template for each type using
example lists: ["le 16", "/20−/24", "/30−/32"] and ["/16−/24", "le 8"].

Ordered template. To synthesize the best ordered template, Diffy uses a sequence alignment
algorithm to efficiently arrange list elements. Diffy computes pairwise templates for every element
in both lists and selects the lowest-cost alignment to form a new template. For unaligned elements,
it introduces an optional template. The example’s resulting alignment from in Figure 5 is:

[ "le 16" "/20−/24" "/30−/32" ]
[ "/16−/24" "le 8" ]
[ "le 16"? "/" · [num] · "−/24" "/30−/32"? "le 8"? ]

Unordered template. To synthesize the optimal unordered template, Diffy calculates the
pairwise template cost of list elements and computes the minimum cost matching between the
elements, provided their cost falls below the cutoff threshold. The unordered template for the
example is: {"le " · [num], "/" · [num] · "−/24", "/30−/32"?}, as shown in Figure 5 (middle). This is
a better match than the ordered template since the "le " · [num] pattern captures multiple matches.
Repeat template. To synthesize a repeat template, Diffy merges elements from each list and

applies a greedy clustering algorithm as depicted in Figure 5 (bottom). The algorithm starts by
creating a group with the first element ("le 16"). Then, it compares the next element ("/20−/24")
to the group using a new template. Due to the high cost, "/20−/24" forms a separate group. The
process continues with the subsequent element "/30−/32", comparing it against both groups. It has
a significantly lower cost when combined with "/20−/24", so Diffy updates the second group to
be "/" · [num] · "0−/" · [num]. The algorithm proceeds until there are no elements are remaining,
resulting in the final template of ("le " · [num] | "/" · [num] · "−/" · [num])∗.

3.6 Object Template Synthesis
Handling objects is simpler than lists, as there is only one object template {𝑠1 : 𝜏1, . . . , 𝑠𝑘 : 𝜏𝑘 }. To
synthesize this template, we identify common keys across the objects recursively compute templates
for their values. When keys are present in some configurations but not others, we introduce an
optional 𝜏? template for the key. For example, the template of objects {"addr" : "192.13.4.1"} and
{"addr" : "192.13.4.2", "len" : "24"} is {"addr" : "192.13.4." · [num], "len" : "24"?}. While this
approach typically works well, Diffy’s implementation also offers a fuzzy key matching mode
that allows object keys to also be templates. Synthesis for these objects resembles unordered
template synthesis from § 3.5 for keys. For example, the template for {"10.0.0.1" : "10"} and
{"10.0.0.2" : "10"} would be {"10.0.0." · [num] : "10"}.
Handing mismatched types. In certain scenarios, configurations can possess distinct node

types. A key might have a string value in one configuration and a list or null value in another. We
segregate the configurations based on their types and template them individually. The outcome is
presented as a choice template, such as (𝜏𝑠|𝜏𝑙) for string and list templates.

4 FINDING BUGSWITH UNSUPERVISED LEARNING
We split Diffy into two orthogonal components — template synthesis and anomaly detection. In
this section, we describe the second component that uses a state-of-the-art anomaly detection
algorithm known as isolation forest [37]. While we describe our approach in detail, we note that it
would also be possible to apply any other learning approaches to Diffy’s templates.

Isolation forests are a form of unsupervised (or self-supervised) anomaly detection technique.
Given a vector of values such as [1.2, 1.8, 0.9, 2.2, 20.1], an isolation forest will assign an
“anomaly score” to each input. This score ranges from 0 to 1 where a value with score closer to 1
indicating a higher likelihood of it being an anomaly. In the example, 20.1 would have the highest
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anomaly score. Although this example used only single-dimentional inputs, isolation forests also
handle multi-dimensional data as well (i.e., a vector of vectors).

Isolation forest is based on the observation that anomalies are both “few and different,” i.e., they
not only have infrequent occurrences but also consist of values that noticeably differ from the
normal, making them easier to separate from other samples. Empirically, this observation leads to
more accurate and reliable anomaly detection results compared with other methods that rely solely
on frequency, density, or distance [23]. To quantify the observation, isolation forest partitions data
randomly and recursively, logging the number of partitions required to isolate each sample. This
process is then repeated many times to derive the average number of partitions, which serves as
the anomaly score for each sample.

As an unsupervised learning method, isolation forest does not require anomaly labels from users
and thus is well suited to our problem where the labels are often not available. Meanwhile, isolation
forest is highly scalable and efficient, demonstrating linear time and space complexities.

Embedding configuration data. Given the synthesized template 𝜏 from §3, Diffy recursively
traverses 𝜏 . For each label ℓ in 𝜏 , Diffy translates the concrete values 𝑣 ∈ 𝑇 (ℓ, 𝑖) for each configura-
tion 𝑖 into a numerical vector that is fed to the isolation forest algorithm. This translation occurs
according to the following steps: (1) apply each type of applicable expression (e.g., present for an
optional template) to get string values (e.g., "true"), (2) if the strings from all configurations are
numerical, then encode them directly, otherwise sort the strings and then apply a standard ordinal
encoding to obtain a numerical representation. Table 2 showcases example expressions that we
used, and users can extend Diffy to add additional expressions.

Table 2. Example expressions for a value with label 𝑥 that trans-

form the value to another value, with example outputs.

Expression Description Examples

present(x) Optional value 𝑥 has a value. "true"
value(x) The value of 𝑥 . "1.3", "abc"
pow2(x) Is value 𝑥 a power of 2. "false"
integer(x) Is value 𝑥 an integer. "true"
choice(x,𝜏) Does value 𝑥 match choice 𝜏 . "false"
length(x) Length of list 𝑥 . "7", "12"

Consider a configuration parame-
ter x with values: "2", "4", "8", and
"10". The expression value(x) just re-
turns x, and Diffy translates the val-
ues directly as [2, 4, 8, 10], lead-
ing to low anomaly scores since all
values are close to each other. How-
ever, the expression pow2(x) maps
the inputs to "true", "true", "true",
"false", whichDiffy then encodes as
[1, 1, 1, 0], resulting in "10" hav-
ing a higher anomaly score. Now
consider another parameter y that captures list values such as ["0x3", "0x0", "0x0"],
["0x0", "0x0", "0x0"], and ["0x0"]. The expression length(y) computes their lengths as [3, 3, 1],
which may identify the last list as a potential bug if most lists are longer.

Analyzing multiple parameters: In this work, we focus on identifying configuration errors
involving only a single configuration parameter. Single parameter errors are by themselves a
prevalent category, and encompass many kinds of misconfigurations including typos or “fat finger”
mistakes, copy-paste errors, type errors, missing configuration, and more (see §6). We leave learning
multi-parameter errors, i.e., correlations across multiple configuration settings, as future work.

5 IMPLEMENTATION OF DIFFY
Diffy is implemented in 4.7K lines of F# and 1.6K lines of C# code. It accepts a file directory
with JSON configuration files and an optional set of tokens with associated costs through the
command line. It always includes token [any] in its analysis. Diffy outputs a template, and a set of
potential bugs along with a score for each bug. Diffy accepts many other optional flags to include
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or exclude different parts of the configurations from its analysis or filter out different kinds of
anomaly expressions from its results. To enhance scalability, Diffy employs several optimizations.

While creating the JSON abstract syntax tree from Figure 2 in memory, Diffy calculates a perfect
hash for each node and stores it as part of the node. This hash enables quick approximate equality
checks between JSON elements and allows Diffy to efficiently cache calls to its synthesize function
to prevent redundant work. Furthermore, when synthesizing a template for a set of strings 𝑆 or
lists 𝐿, etc., Diffy identifies duplicate JSON nodes between configurations using these hashes,
and replaces them with a single copy of the node. This simplification applies recursively and
significantly reduces the cost of synthesis.
Recall that the complexity of string synthesis is worst case O(|R| ·𝑚2 · 𝑛2). We apply several

optimizations to avoid this worst-case complexity in practice. First,Diffy’s implementation includes
an additional rule in the dynamic programming formulation for the [any] token that only allows that
token to match a single character (i.e., horizontally or vertically). We then post-process the template
to coalesce any consecutive [any] tokens. Doing so avoids having to consider all backwards jumps.
Similarly, we use a greedy regex matching semantics to greatly reduce the number of backwards
jumps we must consider (i.e., consider only the maximal match for the regex for each start index).

To speed up the substring matching process, Diffy caches state transitions for index tables from
Figure 4. When updating states the cache stores the new set of states as a function of the current
state set, token, and new token. This one simple idea removes most of the overhead from tracking
automata states, and reduces the index match function I to linear time in practice, as only a few
state sets are typically visited. Finally, Diffy first checks if every string shares a common prefix. If
so, it removes this prefix and inserts a constant template at the beginning. It then synthesizes a
template for the remaining suffixes.

To improve the performance of synthesizing unordered templates, Diffy uses a greedy matching
algorithm that iteratively pairs off the two elements with the lowest cost template. Doing so
improves performance and we found does not affect the quality of the final template much.
Lastly, Diffy omits the computation of some list templates if their cost cannot outperform the

existing ones. For instance, when an ordered template’s cost is low enough that an unordered
template could never surpass it, Diffy does not bother synthesizing the best unordered template.

6 EVALUATION
Our primary focus is to examine the versatility, scalability, and accuracy of Diffy. We assess these
characteristics through multiple case studies, each representative of a distinct aspect of the network
stack. These include the configurations from the wide-area network of a large cloud provider, the
radio units of an operational 5G testbed, and a collection of MySQL database configurations mined
from GitHub. Due to space limitations, we have included the MySQL analysis in Appendix C. These
configurations vary significantly in their structure and scale.

6.1 Case Study 1: Wide-Area Network
We analyzed one of the world’s largest backbone networks, a wide area network (WAN) consisting
of thousands of routers and millions of configuration lines. Routers in the WAN are categorized
by roles, such as edge, border, core, and reflector. Table 3 shows the total number of lines of
configuration for each role. For sensitivity reasons, the exact role names and configuration details
are anonymized. We apply Diffy to each role since configurations within a role share similar
definitions, like prefix lists and community lists, though specifics can vary across routers.

Router’s running configuration files (i.e., those active on the devices) are stored in a centralized
database, providing an accurate snapshot for Diffy. A set of golden configurations (i.e., the ex-
pected configurations) are also available. The running and golden configurations may vary for
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Table 3. Diffy performance on WAN configurations. For each configuration element type, table shows the

(P)arsing time to read JSON files, the (S)ynthesis time and the time for finding (A)nomalies. Each entry of

the format 𝑥 / 𝑦 represents the time taken to template or find anomalies without any tokens (𝑥) and with

additional tokens like [num] and [alpha] (𝑦). All the times are in seconds.

Role
Config

line count

Prefix list Route policy Other

P S A P S A P S A
R1 O(106) 45 34 / 110 1.20 / 0.60 42 1120 / 1212 3.99 / 2.80 70 43 / 58 4 / 1.8
R2 O(106) 34 12 / 24 0.70 / 0.12 27 496 / 537 0.18 / 0.10 26 45 / 115 0.6 / 0.56
R3 O(106) 58 29 / 80 1.20 / 0.50 45 1120 / 1284 1.28 / 1.60 85 36 / 55 1.2 / 0.99
R4 O(105) 4 3.5 / 8 0.20 / 0.10 4 21 / 34 0.16 / 0.18 5 1.8 / 3.3 0.1 / 0.1
R5 O(104) 0.4 1 / 2.4 0.02 / 0.02 0.4 0.81 / 1.1 0.02 / 0.03 0.7 0.23 / 0.27 0.04 / 0.03

a large number of operational reasons. For example, partial or incomplete configuration change
rollouts, temporary changes (e.g., QoS settings to alleviate ongoing network congestion), differing
maintenance schedules (e.g., operators can only take a limited number of devices offline in a given
month for refresh), and many more reasons.

To reduce network outages, the WAN uses a custom “diffing” service that periodically compares
the golden and running configurations and reports all current deviations that may need repair.
We leverage this service to identify the ground truth (i.e., those differences that are unintentional)
and use this data to evaluate the accuracy of Diffy. Because the service reports all differences,
it also includes many differences that are ultimately harmless (e.g., the version number for the
configurations). For this reason, we focus on evaluating Diffy’s precision rather than recall.
Diffy performance. To convert vendor-specific configuration files to JSON, we utilized two

parsers: open-source Batfish [17] and a closed-source parser. We employed the latter for prefix lists
and route policies, while Batfish handled the rest (e.g., community lists, VRFs, SNMP servers, etc.).
We used both parsers because Batfish offers broader coverage but also complicates and obscures the
original configuration data by expanding and inlining prefix lists and route policies. The internal
parser’s JSON representations of prefix lists is exemplified in the top section of Figure 1. Using
these parsers, we analyzed over 99% of the configuration lines for the WAN routers.
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Fig. 6. Precision vs. anomaly score filter for WAN.

Table 3 displays the timeDiffy takes to transform
the JSONs into internal data structures, synthesize
a template, and find anomalies for each role and
configuration element type, both with and without
tokens. During the learning phase, we had Diffy re-
port all potential anomalies, which were then sorted
and filtered by score for operator review. In most
instances, Diffy completes within seconds or min-
utes, even when processing millions of configura-
tion lines. Route policies, being the most complex
element, take the longest time. However, even in

the worst-case scenario, Diffy completes route policies in approximately 20 minutes.
Accuracy of Diffy. We run Diffy on each role using a minimum anomaly score filter 0.51 to

find all issues with some evidence of being an anomaly. For each router and configuration element
name we report if Diffy found an anomaly with the element for this router and compare with
the “diffing” tool based on golden configurations. From this ground truth, we plot the precision
(true vs. false positive ratio) of Diffy as a function of the anomaly score filter in Figure 6. Diffy’s
anomaly score is closely correlated with its precision against the “diffing” service. For instance, for
issues with an anomaly score of 0.8 or higher, roughly 80% of Diffy’s findings are confirmed as
true positives, and the precision goes up to 97% true positives with anomaly score 0.88 or higher.
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While ground truth exists for route policies and prefix lists, other elements such as SNMP servers
are not currently tracked by the diffing tool. For these, we identified a small subset of classes of
issues Diffy reported with high score and manually investigated them with network operators. Of
these, the operators identified 77% as true positives, 8% as false positives, and 15% as requiring
further investigation. Many of the issues represented “cruft” in the configurations from legacy
devices and were subsequently addressed by the operators.
Breakdown of anomalies.We show the frequency of each type of anomaly expression from

Table 2 across all configuration elements in the WAN in Table 4. Most reported issues for this
dataset are related to (1) a configuration element missing or (2) present that should not be, or (3) a
parameter value from the template being different.

Template types.We examined the templates for each element type to better understand the use
of different list template types described in §3.5. For prefix lists, ordered templates are prevalent,
however in some cases where the prefixes differed greatly across routers, Diffy synthesized the
general template ([num] · "." · [num] · "." · [num] · "." · [num] · "/" · [num])∗. Route policies mainly
use object templates with certain list-type values, for which ordered templates are frequent, as the
keys (match, set, or action commands) demand order. Repeat and unordered templates are common
for other elements such as communities, AS paths, Virtual Routing and Forwarding (VRFs) and
servers as they have set semantics. These observations demonstrate that the different template types
are useful in practice for capturing the domain-specific semantics for the various configuration
components.
Example Bug: BGP Community Regex Match. Diffy discovered inconsistencies in regular

expression filter policies used for matching route community tags. For example, some routers
configured a regex starting with a "^" character, while most did not. Diffy synthesized the template
[any] · [num] · ":2[1−3]" and found that the value of [any] was typically "" and only rarely "^". This
character, when present, requires a match at the beginning of the BGP community string and may
lead to a failed match. The operators acknowledged the problem, standardizing the configurations.

Table 4. Percentage of anomalies by expression type

for WAN configurations with anomaly threshold 0.8.

Expression Prefix list Route policy Other

present 92.0 90.9 38.5
value 4.2 7.3 50.6
pow2 0.2 1.3 6.2
integer 3.6 0.1 4.0
choice 0.0 0.4 0.7

Example Bug: IGP Timer. In another in-
stance, a single router had an IGP routing pro-
tocol configuration parameter with a “overload”
setting. This setting was supposed to be "true"
but had previously been erroneously set to a time
in seconds (e.g., "1200") on a single router. This
switches the value to "false" 1200 seconds after
a reboot and resulted in the router taking in more
traffic than intended. The device did not have the
capacity to handle this traffic, and started drop-
ping most of the packets, leading to connectivity
issues for many of the cloud’s customers. The configuration issue was resolved, but automation
later mistakenly reapplied the flawed setting, opening up the potential for another outage. Diffy
detected a high-confidence anomaly from template {"overload" : ("false" | "1200")} and we
were able to alert the operators in time.

6.2 Case Study 2: 5G Radio Access Network
We collected configuration files from a 5G vRAN (virtualized Radio Access Network) testbed
developed and operated within a global cloud provider. The testbed represents the state-of-the-art
5G vRAN deployment, consisting of hardware components such as radio units (RUs), vRAN servers,
PTP (Precise Time Protocol) grandmaster clocks, network switches, along with 5G software stacks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 155. Publication date: June 2024.



155:18 Siva Kesava Reddy Kakarla, Francis Y. Yan, and Ryan Beckett

Table 5. We compare the string synthesis performance of Diffy and FlashProfile [45]. The “Total calls” column

shows the number of string synthesis calls in thousands (§3.4). We also show the mean and median number

of strings in each call. The sub-columns show the breakdown by prefix list, route policy, and other.

Role Total calls (K) Mean Median FlashProfile (s) Diffy (s) Speed up (F/D)

R1 243 871 95 7.5 4.2 13.8 2 3 3 17855 48932 7624 86 53 36 207× 923× 212×
R2 90 395 264 5.2 2.1 5.5 2 2 4 5864 8824 74425 8 11 56 733× 802× 1329×
R3 164 596 100 8.0 2.6 13.5 2 2 2 11855 18356 5985 54 32 25 220× 574× 239×
R4 96 78 4 2.4 2.7 16.8 2 2 12 2419 3015 246 3 1.1 0.7 806× 2740× 351×
R5 47 9 0.2 2.0 2.4 4.0 2 2 4 1139 293 10 0.4 0.2 0.2 2847× 1465× 50×

Our focus in this dataset is on the configurations established for a total of seven RUs in the
testbed. These RUs, manufactured by Foxconn for 5G vRAN, use four antennas to transmit and
receive radio signals on the n78 band (3.3–3.8 GHz). During operation, each RU loads an XML
configuration file that specifies its behavior, e.g., the MAC address of the vRAN server for baseband
processing, the IP address of the PTP grandmaster for clock synchronization, as well as many
low-level configuration knobs (see Figure 9 for a sample configuration snippet).
Given that the testbed is time-shared among users who frequently experiment with various

setups, it is common for multiple variants of the XML configuration to coexist on each RU. To
evaluate Diffy, we first acquired 42 RU configurations that were consciously created by previous
testbed users, excluding factory defaults. In addition, we recreated several types of bugs commonly
encountered during the daily operation of the 5G testbed and we retroactively introduced these bugs
back by generating an additional 8 synthetic configurations to simulate the operational experience.
Each synthetic RU configuration showcases a distinct category of bug, such as a different firmware
version, an old PTP grandmaster IP, or a deprecated VLAN tag for user-plane messages. In total,
the final dataset encompasses 50 configurations.
Diffy performance. We converted the 50 XML configurations into JSON and ran Diffy on

them to detect anomalies with two tokens: [num] and [hex]. Diffy completed in 225 ms, with
44 ms spent on parsing, 110 ms on synthesis, and 71 ms on discovering anomalies. Diffy outputs
anomalies in descending order by their anomaly scores, and we manually reviewed the 64 flagged
issues with an anomaly score of 0.7 or higher. Among these issues, 62 were true positives, resulting
in a precision of 96.9%. Notably,Diffy correctly identified 38 issues in non-synthetic configurations
and flagged all retroactively injected bugs with high confidence, resulting in a recall of 100%. The
only two false positives were associated with uncommon yet plausible values for RRH_DST_MAC_ADDR,
the MAC address of the destination vRAN server, due to Diffy’s lack of knowledge of the MAC
address that the user intended to allocate to a vRAN server.

Example bugs. Diffy successfully identified the misconfigured RU frequency with the synthe-
sized template "3" · [num] and value "3929700" kHz. This was outside the range of typical values,
which all fall into the n78 band. The template is shown in Figure 9. In another case, Diffy flagged
a field called "RRH_TX_ATTENUATION", which indicates the transmit power attenuation before the
RU’s power amplifier. In one configuration, this field has a value of "[20.0, 20.0, 20.0, 20.0]",
whereas the typical value is "[30.0, 30.0, 30.0, 30.0]". As a result, 4 anomalies were flagged
by Diffy, one for each element. It is likely the configuration was created by a testbed user who
experimented with power attenuation, but this deviation should be flagged to the testbed operator.

6.3 Diffy Performance
In this section, We expand on Diffy’s performance along several dimensions.
String synthesis performance.We evaluated Diffy’s string synthesis algorithm from §3 by

comparing it to FlashProfile [45], a leading data profiling tool that also learns regular expression
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patterns to represent string sets. We obtained the set of all calls in Diffy to synthesize string
patterns for each of the WAN roles R1–R5 in Table 5. We replay this set of calls in both Diffy and in
FlashProfile and measure the total time to synthesize string patterns. We measure the performance
difference for prefix lists (first column), route policies (second column), and other elements (third
column), and show the corresponding speedup (FlashProfile time / Diffy time).
The performance comparison results is shown in Table 5. Diffy takes anywhere from under 1

second, to 86 seconds to synthesize the string patterns. In contrast, FlashProfile takes between 10
seconds and 13.6 hours to synthesize similar patterns. This corresponds to a roughly 2–3 orders of
magnitude speedup for Diffy. One of the main reasons for these differences is likely due to the
different approaches taken by the tools. FlashProfile has its own notion of pattern cost, but relies
on heavyweight program synthesis to enumerate regular expression candidate patterns [45, 46]. In
contrast, Diffy takes the cost into account during synthesis as part of its dynamic programming
algorithm. By using FlashProfile in Diffy, for instance, the time to template the route policies in
role R1 would increase from roughly 20 min to over 13 days.
We also manually compared the quality of patterns generated by Diffy and FlashProfile using

FlashProfile’s publicly available benchmark dataset [44]. We found that Diffy produced similar sets
of patterns as FlashProfile if given the same regular expression tokens, costs, and an appropriate
grouping threshold cutoff. Moreover, slight variations in the patterns often do not impact anomaly
detection much (see §6.4).
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Fig. 7. Diffy performance vs. the fraction of

WAN configurations of R1 being analyzed.

Performance trends. We have seen that Diffy
can easily scale to the entire WAN. However, to get
a better sense of how the performance varies with
the number of configurations, we additionally ran
Diffy on smaller subsets of the full set of configura-
tions of the largest role R1 and observe its relative
performance. In Figure 7 we show the fraction of the
runtime for the subset of configurations compared
to that of the full set of configurations relative to
the ratio of configurations analyzed. This lets us see
the general scaling trend, which appears to be just
slightly more than linear.
To evaluate the performance of Diffy in relation

to the number of tokens, we executed Diffy on WAN configurations, altering the number of
tokens between 1 and 10. Due to limitations in space, the selected tokens and the particulars of the
experiment are elaborated in Appendix D. Our findings (Figure 10) reveal that Diffy demonstrates
linear scalability with the number of tokens.

6.4 Diffy Hyperparameter Sensitivity
To evaluate the sensitivity of the grouping threshold used to create choice templates, we vary the
threshold from 0.02 to 0.98 and plot the fraction of the maximum possible anomalies reported at
each threshold using an anomaly score threshold of 0.8 or higher in Figure 8 for the WAN, RAN, and
MySQL configurations (see Appendix C). The plot shows the results for each of the configuration
element types in the WAN for all the roles summed together.

We find that beyond a certain point (e.g., 0.2) the particular value of the threshold does not affect
the anomalies reported greatly. There may be several reasons for this phenomenon. For the WAN,
many of the anomalies are due to missing policies (see Table 4), which remains largely unaffected
by the particular groupings of patterns. In other cases, however, the anomaly detection approach
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Fig. 8. Fraction of anomalies vs. grouping threshold for the WAN, RAN, and MySQL configurations.

described in §4 is fairly robust to the groupings used. For instance, Diffy may detect an anomaly
in the value of a string parameter (e.g., value) or due to separate patterns (e.g., choice).

6.5 Diffy Generality
Diffy offers extensive coverage of configurations due to its support of complex structure for
formats such as JSON, XML, and YAML as well as its ability to learn domain-specific data formats
from examples. In Table 6, we showcase this generality by comparing a sample of WAN router
configuration element types against existing data-driven configuration analysis tools.

Table 6. Representative subset of Router configuration

elements and their support in existing tools.

Element Diffy SelfStarter[31] Others[51, 61]

ACLs   #
AS Path Lists  # #
Community Lists  # #
DNS Servers  # #
Prefix Lists   #
Route Policies   #
Route Process  #  
Static Routes  # #
VRFs  #  

SelfStarter [31] is built specifically to ana-
lyze router configurations and supports struc-
tured policies like prefix lists and route poli-
cies. However, it requires hand-tuning and
specific implementation for each element
type that one wants to analyze and there-
fore cannot support many conceptually sim-
ilar and widely used configuration elements
like BGP community lists without nontrivial
modification. Even in the domain of router
configurations, Diffy analyzes significantly
more configuration features than SelfStarter.
Meanwhile, other tools [51, 52] find simple

kinds of issues for basic strings but fail to analyze complex structured configurations.

7 RELATEDWORK
Diffy is related to several lines of prior work:

Configuration anomaly detection. Previous research extensively explored identifying config-
uration errors using data-driven learning, such as ConfigC [52], ConfigV [51], and Minerals [36].
These approaches view configurations as bags of key-value pairs, learning rules like type or arith-
metic rules. EnCore [61] learns configuration invariants while considering the system environment
to minimize false positives (e.g., by verifying file paths). However, unlike Diffy, these methods
do not apply to hierarchically structured configurations like JSON and do not handle ad hoc data
formats, limiting their applicability.
SelfStarter [31] is a closely related work, uniquely capable of analyzing some table structures

in configurations. It identifies errors in ACLs, prefix lists, and route policies, but needs domain-
specific semantic knowledge (e.g., about IP address octets and ACL reordering). In contrast, Diffy
generalizes SelfStarter’s approach to manage general JSON structures and ad hoc data formats.
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Additionally, as discussed in Table 6, Diffy supports a broader range of templates, such as string,
repeat, and choices templates (refer to Figure 1).
Synthesizing data formats. Learning concise patterns from a given set of strings (§3.4) has

been explored in prior work [1, 16, 45], including FlashProfile [45] and PADs [16]. FlashProfile
relies on expensive program synthesis techniques that involve enumerating all regular expressions
matching a set of examples [46], then utilizing cost metrics and clustering methods to choose the
most appropriate patterns. However, exhaustive enumeration renders FlashProfile impractical for
frequent use in template synthesis as shown in Table 5. In comparison, Diffy employs a dynamic
programming approach and various optimizations to efficiently synthesize string templates.
PADs attempts to solve the ambitious problem of learning complex data formats directly from

text using a top down statistical approach. Rather than learning from raw text, Diffy instead
directly leverages the hierarchical structure that exists in JSON and optimally solves the string
synthesis sub-problem using dynamic programming. PADs also uses regular expression tokens
but relies on a pre-tokenizing step for input strings that may hinder anomaly detection (e.g., all
integers are converted to [num] prior to analysis).Diffy lazily tokenizes strings based on the specific
configuration values. These two approaches vary greatly in their details, though it may be possible
to incorporate ideas from PADs and Diffy.
Network verification. Verification enables users to formally prove the correctness of their

configurations by precisely modeling a system and allowing proactive analysis of configuration
changes. By comparing behavior to user-provided specifications, verifiers identify bugs before
deployment. Verification has been successful in specialized domains like data plane forwarding [3,
26, 28, 34, 35, 39, 40, 58, 62], routing [4–6, 15, 20, 54], and DNS [30]. However, it requires (1)
rigorous system modeling, which can be time-consuming or infeasible for many systems, and (2)
user specifications, which may be challenging to obtain. Diffy requires no specifications and no
system modeling but also provides no guarantees of correctness.

Log file anomaly detection. There is extensive work related to log file anomaly detection [11,
19, 24, 25] that attempts to predict system failures based on anomalous log file entries. These tools
typically work by clustering log lines into templates such as "Command Failed on: ∗" and track
template counts over time to detect anomalous behavior. For instance, an increase in a template
that mentions the word "Failed" may predict a future system crash. Compared to Diffy, these
tools are highly specialized to the domain of log files and neither analyze the hierarchical structure
of JSON nor find bugs in template parameters that are common in configurations.

8 CONCLUSION
In this paper, we presented Diffy, the first tool that can identify likely bugs in complex configura-
tions with ad hoc data formats. Given JSON configurations, Diffy first efficiently synthesizes a
low-cost template that succinctly captures similarities as well as differences across these configu-
rations. This template approach leverages a novel dynamic programming algorithm to efficiently
learn a set of patterns summarizing string data, and Diffy then lifts this algorithm recursively to
synthesize templates for structured data. Finally, by applying unsupervised learning, Diffy is able
to identify likely configuration errors as deviating from the normal behavior. Evaluating Diffy on
a variety of network configurations, we demonstrated its versatility, scalability, and accuracy.
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AVAILABILITY
Diffy is publicly available on Github [32] as well as Zenodo [33]. These sites contain the code
to run Diffy as well as the MySQL and RAN configuration datasets used in the paper. The WAN
configuration dataset is confidential and not included as part of the release.

A EXAMPLE: OPERATIONAL 5G TESTBED
We show another example of Diffy in use for a simplified and anonymized configuration snipped
from an operational 5G testbed. Shown in Figure 9, the configuration is for a set of radio units
(RUs), each with around 30 different configuration parameters. These parameters control different
aspects of the RU such as the grandmaster PTP IP address, the frequency, the attenuation, and so
on. Some of the configuration parameters such as "RRH_DST_MAC_ADDR" consist of hex values. An
example template from Diffy is shown on the right, and the generated anomalous expressions are
shown in the bottom left. As an example, Diffy has identified that the frequency is potentially
incorrectly configured for two of the configurations and that the MAC address is potentially wrong
for another two.

{
"RRH_DST_MAC_ADDR": "00:11:22:33:63:00",
"RRH_LO_FREQUENCY_KHZ": "3929700",
"RRH_TX_ATTENUATION": [

"30.0",
"30.0",
"30.0",
"30.0"

],
}

Example configuration snippet.

{
"RRH_DST_MAC_ADDR": {

"Pattern": "00:11:22:33:[hex]:[num]",
"Params": [{"08": 1, ..., "ff": 2}, {...}]

},
"RRH_LO_FREQUENCY_KHZ": {

"Pattern": "3[num]",
"Params": [{"352260": 12, "460260": 37, "929700": 1}]

},
"RRH_TX_ATTENUATION": [

"@type:ordered",
{

"Pattern": "[num].0",
"Params": [{"20": 1, "30": 45, "40": 4}]

},
{...},
{...},
{...}

]
}

Synthesized lowest cost template.

value(/RRH_DST_MAC_ADDR[0]) = "08"
value(/RRH_LO_FREQUENCY_KHZ[0]) = "929700"
value(/RRH_TX_ATTENUATION[0][0]) = "20"
... ...

Learned expressions and anomalies.

Fig. 9. Example of Diffy for anonymized and simplified configurations from a 5G virtual radio access network.

B AUTOMATA INDEX TRACKING
In this section, we expand on the algorithm Diffy uses to efficiently compute the set of matching
indices for regular expression tokens against another sequence of characters and tokens. Recall
the example from Figure 4, where the input sequence is "1" · [num] · "M" and the goal is to find
all substrings such that the [num] token necessarily matches that substring. For instance, "1"
necessarily matches [num], as does "1" · [num] as well as [num] by itself. However, "1" · [num] · "M",
[num] · "M", and "M" are not necessarily numbers.

B.1 Tracking Automata States
Recall that we take the sequence "1" · [num] · "M" and start by mapping each starting index to a set
of possible states. Initially, there is only a single possible starting index 1, we start in the initial
state for the automata for [num], result in {q0} ↦→ {1}. Now to find what states we may be in after
consuming the first element of the sequence ("1"), we simply apply the automaton transition for
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"1" for each state, resulting in {q1} ↦→ {1}, which is then stored in the index table. Since q1 is an
accepting state, this means that the substring from 1 to 1 (i.e., "1") matches token [num].

Continuing the process, we now add {q0} ↦→ {2} alongside the existing {q1} ↦→ {1} to the index
table to represent matches starting from the second index as well. At this point, we come across
a [num] token in the template sequence. To determine which states we can reach by consuming
a string that also matches this token, we compute the cross product of the token automata with
the automata of the [num] token. The starting states are (𝑞0, 𝑞1) for the old entry ({q1} ↦→ {1})
since we have already consumed "1". We need to find all states that would be final in the [num]
automaton corresponding to a matching string. We find that starting either at index 1 or 2 (same
process repeated but with (𝑞0, 𝑞0) for entry {q0} ↦→ {2}) necessarily results in being in state 𝑞1
only, which means we have a valid regex match. As a result, the index table for the second entry is
updated to {q1} ↦→ {1, 2}.
Finally, after the last template sequence value "M", the automaton will be be in state 𝑞2. Once

again, we add the entry {q0} ↦→ {3} to the index table before applying the "M" to update the
automaton states. For the entry {q1} ↦→ {1,2}, reading "M" results in being in state q2. Similarly, for
the new entry {q0} ↦→ {3}, we end up in state q2. Thus, the index table is updated to {q2} ↦→ {1,2,3}.
This is not a final state, so there is no match for [num] token ending at "M".

Note that, with this approach, we only do work at each step proportional to the number of unique
sets of automaton states that are reached, which tends to be just a small constant number. Diffy
also caches the results of the product construction and thus, scales nearly linearly with the size
of the input strings in practice. The complete algorithm for computing the indices I is shown in
Algorithm 1.

B.2 Fast Algorithm for Token Matching
The FindMatchingStartIndicies (Line 1) takes a regex 𝑟 and a string template 𝜏 as input. The
string template (𝜏 = 𝜏1 · . . . · 𝜏𝑘 ) is assumed to be a concatenation of single character const strings
and tokens from R. The procedure returns for each index (1 ≤ 𝑖 ≤ 𝑘), the set of smaller start indices
fromwhich the token 𝑟 matches the sub-template (I[𝑖] = { 𝑗 | 𝑗 ≤ 𝑖∧TokenMatch(𝑟, 𝜏 𝑗 · . . . ·𝜏𝑖 )}).
As described below, the procedure computes these indices using a single linear pass by tracking
automaton states. For simplicity, we earlier described I to be returning the last set of indices, I[𝑘],
instead of start indices for each 𝑖 . However, in practice, we first compute the starting indices for
each ending index for the entire template 𝜏1 · . . . · 𝜏𝑘 and cache the result. We use this cache during
our dynamic programming step to simply return I[𝑖], when I(𝑟, 𝜏1 · . . . · 𝜏𝑖 ) is called.
The procedure first gets a finite state machine (A𝑟 ) from the regular expression input of the

token 𝑟 using a standard GetFSM (Line 2) procedure. We take the alphabet (Σ) of an automaton to
be ASCII {char(0), char(1), ... ,char(256)} for simplicity, though the actual implementation
of Diffy uses Unicode. As we consider FSMs, each state in the FSM will have a transition from
each symbol in the alphabet. For simplicity, we have shown that the transitions are stored on a per
symbol, but the actual implementation stores character ranges as shown in 1 in Figure 4.
The matching start indices are maintained using a list of 𝑘 sets, I (Line 3) and 𝑇 (Line 3) is the

index table described earlier, which is a map from the set of automaton states to the set of start
indices. The procedure consumes one element 𝜏𝑖 at a time and updates I and𝑇 (Lines 4 to 9). After
the end of the 𝑖𝑡ℎ iteration, an element ⟨𝑆, 𝑉 ⟩ ∈ 𝑇 means that the sub-template from any start
indices in 𝑉 to 𝑖𝑡ℎ index will lead the token automaton to end up in one of the 𝑆 states. If all the
elements until 𝑖 are const strings, then 𝑆 will be a singleton since there is always a deterministic
path for a const string. However, if some of the elements were tokens, then depending on the token
and the transitions in the current automaton A𝑟 , we could have a set of states.
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Line 5 accounts for the case where if we were to start at the 𝑖𝑡ℎ index and finish at 𝑖𝑡ℎ index,
then we would be in the automaton start state before consuming 𝜏𝑖 . The procedure calls out
UpdateIndexTable procedure (Line 6) to consume 𝜏𝑖 and update the index table. The UpdateIn-
dexTable procedure returns a new index table 𝑇 ′, where for each entry ⟨𝑆, 𝑉 ⟩ ∈ 𝑇 , there is an
entry ⟨𝑆 ′, 𝑉 ⟩ ∈ 𝑇 ′ which is the result of making a transition on 𝜏𝑖 from each state in 𝑆 (Line 14).
The MoveStates procedure (Line 17) is split into two cases based on the input 𝜏𝑖 . If 𝜏𝑖 is a

character, then for each state in the input, we get the next set of states by looking up the transitions
in A𝑟 (Lines 37 to 38). If 𝜏𝑖 is a token, we need to find all states that could happen from the input
set of states if we consider a string accepted by 𝜏𝑖 . We simultaneously make moves in both the
automata to calculate the new states. In the A𝑖 , we begin in the start state, and in A𝑟 we begin in
the input set of states (Line 23). We, then, make a transition in both automata for each symbol in the
alphabet 𝑐 . We can think of this as if the input to the automata are single character strings (Line 26),
and we want to find out what states that could lead to. If inA𝑖 , that leads to an accepting state, then
the single character string is accepted by 𝜏𝑖 and we have the set of new states that could happen in
A𝑟 (Lines 31 to 32). To simulate the two character strings, we use the state combination from the
single character string and continue from there (Lines 33 to 35). We continue this process until all
the combinations are processed, and this process is guaranteed to terminate as each automaton has
a finite number of states.

C CASE STUDY 3: MYSQL
In our final case study, we evaluate Diffy on MySQL configurations, a common target for anomaly-
based bug finding tools due to its simple key-value format [51, 52, 61]. We compared Diffy to
ConfigV [51] using the same MySQL configuration dataset as in the original paper. ConfigV learned
invariants (rules) from a training set of 256 configurations and tested them on a 973-configurations
test set, randomly selected from GitHub. Both datasets are publicly available online3.
ConfigV is designed to detect various errors, particularly those related to MySQL. It identifies

Type errors, which infer the expected type (string, bool, int, path, size (integer followed by ‘K’, ‘M’,
‘G’)) of each keyword from the training set and flag discrepancies in the test set. As these errors are
broadly applicable beyond MySQL, we focus on them. ConfigV employs association rule learning
to create Type rules with specified support and confidence thresholds. Only rules with a minimum
of 2% support and 71% confidence are considered.
Upon executing ConfigV, we found that it lacks a confidence threshold and has an absolute

support threshold. We set the support to 5 (equivalent to 2% of the 256 training configurations) and
eliminated inferred rules below 71% confidence. While the ConfigV paper claims 94 Type rules, we
got 101. Testing ConfigV yielded 3200 errors, far more than the reported 345. Many were erroneous
(flagged keywords were int but marked as not int), potentially due to a bug in the tool. We instead
created a script to infer each flagged keyword’s correct type using the paper’s type inference rules
and compared it to the expected type from the learned rules. After this adjustment, we found 229
violations. A significant portion of the remaining violations were false positives, either due to
considering only Unix path syntax (path) and not Windows, or resulting from placeholder variables
such as {{MYSQL_PORT}} or "@mysql-pid" [41]. After excluding these instances, 168 violations
remained.

3https://github.com/ConfigV/ConfigV
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Algorithm 1: Calculate Matching Indices 𝐼
Input: Token 𝑟 , and string template 𝜏 = 𝜏1 · . . . · 𝜏𝑘
Output: Indices (𝑖, 𝑗) where 𝑟 matches (𝜏𝑖 · . . . · 𝜏 𝑗 )

1 Procedure FindMatchingStartIndices(𝑟 , 𝜏)

2 A𝑟 ← GetFSM(𝑟 )
3 𝑇 ← ∅, I ← [∅1, ∅2, · · · , ∅𝑘 ]
4 for i = 1 to 𝑘 do

5 𝑇 [{Ar .startState}] ← 𝑇 [{Ar .startState}] ∪ {i}
6 𝑇 ← UpdateIndexTable(A𝑟 , 𝜏i, 𝑇 )
7 for ⟨𝑆,𝑉 ⟩ in T do

8 if 𝑆 ⊆ A𝑟 .finalStates then
9 I[𝑖] ← I[𝑖] ∪𝑉

10 return I
11 Procedure UpdateIndexTable(A𝑟 , 𝜏𝑖 , 𝑇 )

12 𝑇 ′ ← ∅
13 for ⟨𝑆,𝑉 ⟩ in 𝑇 do

14 newStates← MoveStates(A𝑟 , 𝜏𝑖 , 𝑆)
15 𝑇 ′ [newStates] ← 𝑇 ′ [newStates] ∪𝑉
16 return 𝑇 ′

17 Procedure MoveStates(A𝑟 , 𝜏𝑖 , states)
18 states′ ← ∅
19 if 𝜏𝑖 ∈ R then

20 A𝑖 ← GetFSM(𝜏𝑖 )
21 seen← ∅, queue← [ ]
22 seen← seen ∪ {⟨A𝑖 .startState, states⟩}
23 queue.enqueue(⟨A𝑖 .startState, states⟩)
24 while queue do
25 ⟨s, S⟩ ← queue.Dequeue()
26 for 𝑐 in Σ do

27 S′ ← ∅
28 for 𝑠𝑟 in S do
29 S′ ← S′ ∪ {A𝑟 .trans[𝑠𝑟 , 𝑐]}
30 𝑠′ ← A𝑖 .trans[𝑠, 𝑐]
31 if s′ ∈ A𝑖 .finalStates then
32 states′ ← states′ ∪ S′

33 if ⟨s′, S′⟩ ∉ seen then

34 seen← seen ∪ {⟨s′, S′⟩}
35 queue.enqueue(⟨s′, S′⟩)

36 else

37 for s in states do
38 states′ ← states′ ∪ {A𝑟 .trans[𝑠, 𝜏𝑖 ]}

39 return states′
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Table 7. Regular expression tokens costs used to assess Diffy’s performance for different token subsets.

Id Token Cost

1 [path] = ".∗/.∗" 0.25
2 [num] = "[0−9]+" 0.35
3 [float] = "[0−9]+\.[0−9]+" 0.30
4 [alpha] = "[a−zA−Z]+" 0.30
5 [lower] = "[a−z]+" 0.20
6 [upper] = "[A−Z]+" 0.20
7 [ip] = "[0−9]+\.[0−9]+\.[0−9]+\.[0−9]" 0.25
8 [prefix] = "[0−9]+\.[0−9]+\.[0−9]+\.[0−9]/[0−9]+" 0.20
9 [hex] = "[a−fA−F0−9]+" 0.40
10 [community] = "[0−9]+:[0−9]+" 0.20

Each violation consists of the test configuration file name, the keyword, its expected type and the
actual value from the configuration. We grouped the 168 violations by their three-tuple of keyword,
expected type, and value, as each violation with the same three-tuple has the same underlying
reason. This allowed us to identify 54 unique kinds of violations.

BecauseDiffy lacks distinct training and testing phases, we evaluated ConfigV results by running
Diffy on the combined configuration sets (training and testing), using a minimum anomaly score
threshold of 0.7, and filtering for anomalies specific to the testing set while excluding placeholder
variables. We then cross-referenced ConfigV-reported issues with Diffy-detected anomalies to
identify similarities. Of the 54 error cases that ConfigV reported, Diffy flagged 40 as anomalies
and did not report the other 14.

Of the 14 unflagged cases, several involved ConfigV detecting a type error when a string value was
expected, but an empty string was provided. Diffy did not report these cases as empty strings were
common values for the keys, likely representing default behaviors. In another instance, ConfigV
inferred a size type for the net-buffer-length field, reporting a violation when an integer was
given. Diffy also reported these cases but with lower anomaly scores (e.g., 0.65). ConfigV flagged
multiple configurations with keyword binlog-cache-size due to inferring as size type from the
training set. However, most testing set values were integers, resulting in false error reports. This
could be attributed to separate testing and training phases. Diffy, recognizing the flipped case, did
not report these issues. Finally, in one case Diffy learned a sub-optimal pattern due to the order in
which it processed the configurations and thus, missed a valid issue.

Interestingly, without knowledge about MySQL types, Diffy found similar cases. For example,
Diffy identified fields with patterns like [num] · [any] from Figure 4, where [num] captures the value
and [any] captures units (e.g., "M", "G", "K"). If users used invalid units like "KB", Diffy detected
these cases due to their rarity. In another instance, ConfigV identified a type issue where a file path
was expected, but the user provided "OFF". ConfigV had built-in domain knowledge, recognizing
"OFF" as a boolean value and flagging it as an issue. Diffy also found this issue since it learned the
template ([path]|"OFF"), with the latter appearing once and the former every other time.
Overall, Diffy reported many of the same violations as ConfigV but without requiring any

domain-specific tuning and engineering. For the 14 cases Diffy did not report, many appear to be
either false positives or of unclear value without further investigation.

D PERFORMANCE OF DIFFY WITH NUMBER OF TOKENS
To accurately assess Diffy’s efficiency with varying regular expression token combinations, we
utilized 10 specific tokens, listed in Table 7, running Diffy on WAN configurations using different
subsets of these tokens. We picked these tokens as it has a combination of domain-specific tokens
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Fig. 10. Diffy performance (fraction of runtime) vs. the number of tokens for the WAN dataset. For each size

of tokens, we run Diffy with all possible subset combinations, and show the mean and standard deviation.

and generic tokens. As mentioned earlier, we assigned the cost based on the sparsity of the regular
expression. Tokens with regular expressions that match fewer strings like [ip] are given lower
cost compared to [num], as they are more specific. We processed Diffy with all possible token
combinations for each size, and subsequently calculated the mean and standard deviation for the
results obtained. To illustrate, when considering the number of tokens as 2, there are 45 possible
combinations

(10
2
)
from the 10 tokens, necessitating 45 separate runs of Diffy, each with a unique

input combination. When the number of tokens is 10, there is only one combination, and we take
standard deviation as zero. For every combination, we run Diffy on each role and each element
type, such as prefix list and route policy. We then aggregated the time Diffy consumed across
all roles for every distinct element type. The results depicting Diffy ’s performance, in terms of
fraction of runtime in relation to the increase in the number of tokens, is illustrated in Figure 10. In
route policies and others, the standard deviation is around 0.02, which is why the shaded part is
not big. From the plots, it is evident that as we increase the number of tokens, we see a relatively
linear increase in the runtime.
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