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ABSTRACT

The Domain Name System (DNS) plays a vital role in today’s Inter-
net but relies on complex distributed management of records. DNS
misconfiguration related outages have rendered popular services
like GitHub, HBO, LinkedIn, and Azure inaccessible for extended pe-
riods. This paper introduces GRoot, the first verifier that performs
static analysis of DNS configuration files, enabling proactive and
exhaustive checking for common DNS bugs; by contrast, existing
solutions are reactive and incomplete. GRoot uses a new, fast verifi-
cation algorithm based on generating and enumerating DNS query
equivalence classes. GRoot symbolically executes the set of queries
in each equivalence class to efficiently find (or prove the absence
of) any bugs such as rewrite loops. To prove the correctness of our
approach, we develop a formal semantic model of DNS resolution.
Applied to the configuration files from a campus network with
over a hundred thousand records, GRoot revealed 109 bugs within
seconds. When applied to internal zone files consisting of over 3.5
million records from a large infrastructure service provider, GRoot
revealed around 160k issues of blackholing, initiating a cleanup.
Finally, on a synthetic dataset with over 65 million real records, we
find GRoot can scale to networks with tens of millions of records.

CCS CONCEPTS

• Software and its engineering→ Software maintenance tools; •
Networks → Application layer protocols; Network management; •
Theory of computation → Logic and verification.
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1 INTRODUCTION

The Domain Name System (DNS) is one of the largest distributed
systems in use on the Internet today. It implements the fundamental
service of name resolution: allowing users to connect to online ser-
vices through user-friendly domain names in place of IP addresses,
and enabling new applications ranging from service discovery [9]
to load balancing [6, 23] to spam filtering [12, 13, 30, 31, 45].

To operate at global scale, DNS implements a hierarchical data-
base managed by a distributed collection of organizations; each
organization is responsible for maintaining a subset of the DNS
infrastructure to provide name resolution for its portion of the DNS
namespace (e.g., sigcomm.org). Operators within organizations
manage the DNS through configuration zone files, which specify
how DNS should respond to different types of user queries (e.g.,
whether to return an IP address, rewrite the user query, delegate
the query to another domain, etc.). While some automation ex-
ists — for example in master-slave replication of servers — many
data records are manually configured, especially at the interfaces
between ownership boundaries. For example, customers of CDNs
such as Akamai must manually configure their DNS records to
point to CDN locations [1].

The scale and complexity of DNSmakes its management difficult,
and consequently, configuration errors that lead to performance
or connectivity issues are widespread in practice [3, 16, 20, 24, 39,
41, 49, 51]. To make matters worse, configuration errors in DNS
are often highly disruptive due to its global presence and residual
caching effects from resolvers. For example, a 2014misconfiguration
at GitHub resulted in a loss of access to open source repositories
[16] (possibly impacting SIGCOMM authors that year), and a mis-
configuration for the JavaScript Node Package Manager (NPM)
caused users to lose access to the service world-wide [15]. In both
cases the outages persisted for hours as a result of DNS resolvers
caching the misconfigured response. Perhaps the most severe of
these outages was one caused by a recent DNS misconfiguration at
Microsoft [44] that resulted in a global outage impacting all Azure
customers for 2 hours. The error was caused by a management pro-
cess necessitated by a migration, which resulted in an inconsistency
among zone file replicas.

To prevent DNS-related outages, operators today rely on a mix of
techniques such as monitoring [28, 50], testing [10, 22], linting [35]
and manual review. While these approaches are often effective at
identifying issues, most of them can only catch errors after they
have already been introduced into a live system. For instance, so-
lutions based on monitoring have this limitation and are further

https://doi.org/10.1145/3387514.3405871
https://doi.org/10.1145/3387514.3405871


SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Millstein, and George Varghese

nameserver: a.gtld-servers.net.

$ORIGIN com.

mybankcard.com. IN NS ns1.fnni.com. a
mybankcard.com. IN NS ns2.fnni.net. b
ns1.fnni.com. IN A 216.205.207.204 c

nameserver: ns1.fnni.com.

$ORIGIN mybankcard.com.

mybankcard.com. IN NS ns1.fnni.com. d
mybankcard.com. IN NS ns2.fnni.net. e
mybankcard.com. IN DNAME bankcard.com. f

$ORIGIN bankcard.com.

www.bankcard.com. IN AAAA 74d7::b94d:d07 g

www.bankcard.com. IN A 204.58.233.75 h
email.bankcard.com. IN A 66.161.21.26 i
∗.bankcard.com. IN A 204.58.233.244 j

nameserver: ns2.fnni.net.

$ORIGIN mybankcard.com.

mybankcard.com. IN NS ns1.fnni.net. k
mybankcard.com. IN NS ns2.fnni.net. l
mybankcard.com. IN DNAME bankcard.com. m

$ORIGIN bankcard.com.

www.bankcard.com. IN AAAA 74d7::b94d:d07 n
www.bankcard.com. IN A 204.58.233.75 o
email.bankcard.com. IN A 66.161.21.26 p

∗.bankcard.com. IN CNAME www.bankcard.com. q

Figure 1: Example zone files for three nameservers: a.gtld-servers.net, ns1.fnni.com, and ns2.fnni.net. The query

⟨support.mybankcard.com, A⟩ has two possible executions: one for records ⟨𝑎, 𝑓 , 𝑗⟩ and another for ⟨𝑏,𝑚,𝑞, 𝑜⟩.

complicated by deployment factors such as caching, which can de-
lay the identification of a problem, and geo-replication, which can
alter the nameserver used to resolve a query based on the client’s
geographic location. Further, none of these approaches can provide
strong guarantees — the system may still have bugs even after
successfully passing all of these checks.

To address the problem of DNS misconfiguration, we present
GRoot, which, to the best of our knowledge, is the first verification
tool for DNS configurations. Given the DNS zone files of an organi-
zation and a property Φ of interest, GRoot will either verify that Φ
holds for all possible DNS queries or provide a counterexample.

While the number of possible DNS queries is huge, we observe
that the number of distinct behaviors is much smaller and is a func-
tion of the DNS configuration files. Based on this insight, GRoot
first performs an analysis of the DNS configuration to partition
all possible queries into equivalence classes (ECs) each of which
captures a distinct behavior. The key property of this partition is
that two queries in the same EC resolve to the same set of possible
answers (in general a query can have multiple possible answers
due to nondeterminism inherent in the DNS resolution process)
in the given DNS configuration. GRoot then performs a symbolic
execution of each EC to produce its set of answers and check the
given property Φ. Although existing standards [37, 38, 42] spec-
ify the behaviour of the DNS, these standards are informal and
described in English. Therefore, as part of this work we present a
mathematical formalization that allows for automatically verifying
DNS configurations and detecting any misconfiguration. Our for-
mal model of the existing DNS resolution standards is crucial for
the efficient symbolic execution in GRoot.

We applied GRoot to the configuration files we obtained from a
large campus network which has over a hundred thousand records,
GRoot revealed 109 new bugs and completed in under 10 seconds.
GRoot identified bugs in the network ranging from delegation

inconsistencies to lame delegations to rewrite loops and others.
When applied to internal zone files consisting of over 3.5 million
records from a large infrastructure service provider,GRoot revealed
around 160k issues of blackholing, which initiated a cleanup of the
zone files. Finally, on a synthetic dataset that we created from over
65 million real DNS records [11] we found that GRoot can scale
to networks with tens of millions of records spread across tens of
thousands of zones.

To summarize, we make the following contributions:

• A formalmodel of the DNS. To the best of our knowledge,
we present the first formal model of DNS that captures the
semantics of both the authoritative and recursive systems.

• A fast verification algorithm. Using our formal model of
the DNS, we describe, and prove the correctness of, a fast
algorithm to generate equivalence classes of DNS queries.
These equivalence classes enable GRoot to efficiently, and
exhaustively, check the correctness of DNS zone files.

• Evaluation on production configuration files.We eval-
uateGRoot using data from (1) configurations obtained from
a large campus network, (2) configurations obtained from
a large infrastructure service provider, and (3) a synthetic
dataset built from over 65 million Internet records, showing
that GRoot is effective at finding bugs and verifying large
configurations.

Ethics. Our formal model and tool GRoot could be used to prevent
potential attacks against DNS infrastructure (e.g., input queries that
result in the most work possible being performed) as one can check
if there is any input query that can lead to an attack. On the flip
side, if an attacker has access to the tool and the organization’s
zone files, they could also do the same. However, gaining access to
an organization’s internal zone files is inherently difficult.
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Bug Description

Delegation Inconsistency The parent and child zone files do not have the same set of NS and A (glue) records for delegation
Lame Delegation A name server that is authoritative for a zone does not provide authoritative answers
Missing Glue Records The zone file is missing required “glue” A or AAAA records for nameservers in NS records
Non-Existent Domain for Service DNS returns the NXDOMAIN answer for a known service (e.g., sigcomm.org)
Cyclic Zone Dependency Resolving a query for zone 𝑍1 depends on 𝑍2, which depends on 𝑍1
Rewrite Loop There exists a query that is rewritten in a loop 𝑞1 → 𝑞2 → 𝑞3 → . . . → 𝑞1
Query Exceeds Maximum Length There exists a query 𝑞1 is that is eventually rewritten to 𝑞𝑛 which exceeds the max label or domain length
Answer Inconsistency Different executions in DNS result in different answers
Zero Time To Live There exists a query which will return a resource record with the TTL set to 0, which prevents caching
Rewrite Blackholing There exists a query 𝑞1 that is eventually rewritten to 𝑞𝑛 which does not exist and DNS returns NXDOMAIN

Table 1: Sample subset of possible bugs. Several are taken from previous work [40] while we proposed the rest.

2 BACKGROUND AND MOTIVATION

Conceptually, DNS provides a mapping between “human-readable”
domain names used to identify services and “machine-readable” IP
addresses needed to locate those services. In this context, a domain
name is a URL such as mybankcard.com. Domain names naturally
form a partial order. For example, we say that mybankcard.com
is the parent of support.mybankcard.com, and accordingly
support.mybankcard.com is a child of mybankcard.com. We also
consider support.mybankcard.com, mybankcard.com, and com to
be prefixes of support.mybankcard.com (explained in §3). A DNS
query contains a domain name, and a query is resolved by the DNS in
order to produce say, a corresponding IP address. For example a DNS
query for mybankcard.com may resolve to the IP 204.58.233.75.

Management of the DNS database is partitioned across mul-
tiple nameservers, which are maintained by different organiza-
tions and which are themselves referenced via domain names
(e.g., ns1.fnni.com). For example, owners of domains such as
google.com, microsoft.com, and netflix.com eachmanage their
own DNS nameservers. A nameserver includes a collection of zones,
each of which contains DNS records that provide information for
resolving a particular domain name and possibly some of its chil-
dren. In its simplest form, this information is simply the IP address
corresponding to the domain name. However, as our example below
shows, a wide variety of other types of information exist as well,
including: start of authority data (SOA), text data (TXT), mail ex-
change server data (MX), record aliases (CNAME), domain redirections
(DNAME), nameserver referrals (NS), reverse IP-to-domain mappings
(PTR), and many others [37, 42].

When a user enters a URL (e.g., support.bankcard.com) into
a browser, a DNS query is sent to the ISP’s DNS resolver, which
traverses the DNS database to resolve the query. It does so using a
recursive process of querying nameservers, starting from a known
root nameserver and continuing to other nameservers until the
query is sent to a nameserver that has an authoritative answer for
the query. We next illustrate this process with a small example and
then use it to describe the challenges of proper DNS configuration.

2.1 An example of DNS resolution

To see how a DNS query gets resolved, consider the configuration
zone files shown in Figure 1, which are based on real records we
observed in practice (simplified and anonymized for presentation).
There are five zone files spread across three different nameservers
(a.gtld-servers.net, ns1.fnni.com, and ns2.fnni.net). Each

nameserver serves one or more zones (e.g., mybankcard.com and
bankcard.com), and is configured to hold a set of resource records
in each zone. We depict each record with an accompanying label
(e.g., a ) and refer to those labels when discussing a record. Each
record has a domain name “key” and a value, along with other
information such as the record type. For instance, record a is for
the domain name mybankcard.com and has type NS, which means
the “value” refers to another nameserver (ns1.fnni.com).

Suppose a user issues a DNS query for the IP address of the
domain name support.mybankcard.com. The query is represented
as the tuple ⟨support.mybankcard.com, A⟩, where A represents the
IPv4 record type. Assuming the answer is not already cached, the
resolver will issue the query to a known default nameserver, for
instance a.gtld-servers.net in this example. The nameserver
is now responsible for answering this query, either by answering
directly, or by referring the resolver to other nameservers.

To do so, the nameserver will lookup the closest matching
records for the query (roughly speaking the records with the longest
matching prefix). For support.mybankcard.com, this will be the NS
records with domain name mybankcard.com { a , b }. The name-
server will respond with both records, which indicate the resolver
should continue by asking another nameserver (ns1.fnni.com
or ns2.fnni.net). In this particular case, the nameserver will
also include c (glue record) in its response, the IPv4 address to
reach ns1.fnni.com, according to the wider definition of Bailiwick
rule [21] (a.gtld-servers.net includes the IPv4 records for the
referred nameserver even if under a sibling domain (fnni.com)).

After receiving a response from a.gtld-servers.net, the re-
solver will then nondeterministically chose one of the two new
nameservers to ask next. In practice, this decision is often influenced
by heuristics such as the estimated RTT to the nameserver. Suppose
the resolver chooses to query ns1.fnni.com next. The same query
support.mybankcard.com is sent to the nameserver, which hosts
two zones (mybankcard.com and bankcard.com). The nameserver
will choose the closest matching zone (mybankcard.com) and then
proceed as before. This time, the most relevant record is the DNAME
record f . A DNAME record performs a query rewrite, in this case to
redirect the user to bankcard.com. Specifically, f will rewrite the
query prefix mybankcard.com to bankcard.com, yielding the new
query support.bankcard.com.

The nameserver will now re-evaluate this new query since
it has a configuration locally for the zone bankcard.com. This
zone has IP records for the domains www.bankcard.com and
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(1) 𝑑1 ≃𝑗 𝑑2
def= (0 ≤ 𝑗 ≤ min( |𝑑1 |, |𝑑2 |)) ∧ (∀𝑖 . 0 < 𝑖 ≤ 𝑗 =⇒ 𝑑1 [𝑖 ] = 𝑑2 [𝑖 ]) domain prefix match

(2) max≃ (𝑑1, 𝑑2)
def= max

{
𝑗 | 𝑑1 ≃𝑗 𝑑2

}
maximal prefix match

(3) 𝑑1 ≤ 𝑑2
def= 𝑑1 ≃|𝑑1 | 𝑑2 domain partial order

(4) 𝑑1 ∈∗ 𝑑2
def= ( |𝑑2 | ≤ |𝑑1 |) ∧ (𝑑1 ≃( |𝑑2 |−1) 𝑑2) ∧ 𝑑1 [ |𝑑2 | ] ≠ ∗ = 𝑑2 [ |𝑑2 | ] domain wildcard match

(5) Match(𝑟, 𝑞) def= dn(𝑟 ) ≤ dn(𝑞) ∨ dn(𝑞) ∈∗ dn(𝑟 ) record matches query

(6) Rank(𝑟, 𝑞, 𝑧) def= ⟨I (Match(𝑟, 𝑞)) , I (ty(𝑟 ) = NS ∧ dn(𝑟 ) ≠ dn(𝑧)) ,max≃ (dn(𝑟 ), dn(𝑞)), I (dn(𝑞) ∈∗ dn(𝑟 )) ⟩ resource record rank

(7) 𝑟1 <𝑞,𝑧 𝑟2
def= Rank(𝑟1, 𝑞, 𝑧) ◁ Rank(𝑟2, 𝑞, 𝑧) resource record order

Figure 2: Common DNS definitions, and notations.

email.bankcard.com, but not for support.bankcard.com. As
such, the query will match thewildcard record j . Wildcard records
(with ∗) match domain names with a shared prefix that are not
matched by other records [37]. Thus, the nameserver will return
an answer with IP address 204.58.233.244.

2.2 DNS configuration challenges

Authoring and maintaining correct DNS configurations is challeng-
ing for several reasons. First, the protocol is inherently nondeter-
ministic. In the above example, if the resolver had chosen to send the
query to the nameserver ns2.fnni.net instead of ns1.fnni.com,
then after several steps DNS would match the query with the wild-
card record q . The CNAME record type (canonical name) performs a
rewrite without preserving the query suffix, so the query becomes
www.bankcard.com and finally matches record o , which provides
the IP address 204.58.233.75, differing from the result above.

Second, as the example shows, the DNS protocol is intricate
and subtle, involving multiple types of records and complex de-
pendencies among these records due to behaviors such as query
rewriting. Both CNAME and DNAME rewrites provide a level of indi-
rection to allow efficient handling of change. For example, DNAME
records can help when multiple subtrees of the DNS need to be the
same. CNAME records are useful when users have to be redirected to
the same information from different domains as in example.com
and www.example.com. Though DNAME records are a bit rare, CNAME
records are pervasive, and CNAME chains are used extensively by
CDNs to accelerate the efficiency of content delivery [18, 43, 46].

Third, DNS is managed as a collection of distributed zone files,
under the control of different organizations. Finally, all of these
issues arise in the context of understanding a single DNS query, but
operators must ensure that all possible queries behave as intended.

For all of these reasons, it is no surprise that configuration
changes and operator mistakes are at the heart of many large-scale
DNS outages in the past [16, 24, 39, 44, 49, 51]. Indeed, there are
many ways in which DNS behavior can go wrong, in addition to
nondeterministically returning different answers as shown above.
For example, a configuration mistake might result in DNS returning
NX (non-existent domain) for a popular service, which can result
in a loss of connectivity, as was the case in the recent Azure out-
age [44]. As another example, a query might get stuck in a rewrite
loop. Table 1 summarizes several common kinds of DNS misconfig-
urations. In §7 we demonstrate our tool GRoot’s effectiveness in
finding such errors in real-world DNS configurations.

3 FORMAL MODEL OF DNS

In order to exhaustively verify the behavior of the DNS, we must
first formalize its behavior. In this sectionwe provide a formal, math-
ematical semantics for DNS, including both nameserver lookup and
recursive resolution. A key technical challenge in formalizing this
model was to accurately capture the behavior of DNS in the pres-
ence of many complex features such as nondeterminism, wildcard
records, referrals, different types of rewrites, and many other fea-
tures, all of which interact in subtle ways. To our knowledge this
is the first formal model of DNS, and as such we hope in future
researchers can build on this model in order to precisely reason
about the behavior of DNS.

3.1 Definitions and Notations

A domain name is a string identifier controlled by some administra-
tive group that DNS associates with other underlying information,
such as an IP address or mail record. We model a domain name as
a sequence of zero or more strings, called labels. The domain name
foo.com contains the labels foo, com, and an implicit empty label
(𝜖) for the root domain. For clarity, we often write a domain name
as a concatenated sequence of labels delimited by ◦ and terminated
by the special symbol 𝜖 , which represents an empty string (e.g.,
foo.com is written as foo ◦ com ◦ 𝜖). The sequence with only the
empty domain name (𝜖) is called the root domain. A full domain
name may not exceed either 253 characters in its textual represen-
tation, 127 labels in its length, or 63 characters for any individual
label. Given a domain 𝑑 = 𝑙𝑘 ◦ . . . ◦ 𝑙0 where 𝑙0 = 𝜖 , we write |𝑑 |
to denote the index of the last label 𝑘 , and we use the indexing
notation 𝑑 [𝑖] to select label 𝑙𝑖 . We denote the set of valid domain
names by the set: domain.

Figure 2 shows a number of definitions that we use to define the
behavior of DNS. Specifically, we use the notation 𝑑1 ≃𝑗 𝑑2 (1) to
mean that domains 𝑑1 and 𝑑2 share a common prefix of 𝑗 labels (not
counting 𝜖). For example, foo ◦ com ◦ 𝜖 ≃1 com ◦ 𝜖 . To select the
maximal 𝑗 such that 𝑑1 ≃𝑗 𝑑2, we write max≃ (𝑑1, 𝑑2) (2). We use
the definition of ≃𝑗 to introduce a partial ordering among domain
names (3) that orders them by longest match. In particular, 𝑑1 ≤ 𝑑2
iff 𝑑1 is a prefix of 𝑑2 (𝑑1 ≃ |𝑑1 | 𝑑2). We also use the notation 𝑑1 ∈∗ 𝑑2
to mean that 𝑑1 matches the wildcard domain 𝑑2 (4).
Zones and resource records. A DNS zone 𝑧 ∈ zone is a set of re-
source records (zone = P(record)). We use the symbol P(record)
here to represent the powerset of resource records. A zone is well-
formed if it contains exactly one SOA (Start of Authority) record
listing the domain name of the zone along with other administrative
information. Appendix A §10 lists other conditions a well-formed
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Resource Record Set Lookup P(record) × query × zone → answer

RRLookup(𝑅,𝑞, 𝑧) =



ExactMatch(𝑅,𝑞, 𝑧,𝑇 ) dn(𝑅) = dn(𝑞)
WildcardMatch(𝑅,𝑞,𝑇 ) dn(𝑞) ∈∗ dn(𝑅)
Rewrite(𝑅,𝑞) dn(𝑅) < dn(𝑞), DNAME ∈ 𝑇

Delegation(𝑅, 𝑧) dn(𝑅) < dn(𝑞), DNAME ∉ 𝑇, NS ∈ 𝑇, SOA ∉ 𝑇

⟨NX, ∅⟩ otherwise
where𝑇 = {ty(𝑟 ) | 𝑟 ∈ 𝑅 }

ExactMatch(𝑅,𝑞, 𝑧,𝑇 ) =


⟨Ans, T(𝑅, ty(𝑞)) ⟩ Authoritative(𝑇 ), ty(𝑞) ∈ 𝑇

⟨AnsQ, ⟨𝑅, ⟨ans(𝑟 ), ty(𝑞) ⟩⟩⟩ Authoritative(𝑇 ), ty(𝑞) ∉ 𝑇, CNAME ∈ 𝑇, 𝑅 = {𝑟 }
Delegation(𝑅, 𝑧) ¬Authoritative(𝑇 ), NS ∈ 𝑇

⟨Ans, ∅⟩ otherwise

WildcardMatch(𝑅,𝑞,𝑇 ) =


⟨Ans, Syn (T (𝑅, ty(𝑞)), dn(𝑞)) ⟩ ty(𝑞) ∈ 𝑇

⟨AnsQ, ⟨Syn(𝑅, dn(𝑞)), ⟨ans(𝑟 ), ty(𝑞) ⟩⟩⟩ ty(𝑞) ∉ 𝑇, CNAME ∈ 𝑇, 𝑅 = {𝑟 }
⟨Ans, ∅⟩ otherwise

T(𝑅, 𝑡 ) = {𝑟 ∈ 𝑅 | ty(𝑟 ) = 𝑡 }
Rewrite(𝑅,𝑞) = ⟨AnsQ, DProc (T (𝑅, DNAME), 𝑞) ⟩

Authoritative(𝑇 ) = NS ∉ 𝑇 ∨ SOA ∈ 𝑇

Delegation(𝑅, 𝑧) = ⟨Ref,Glue(T (𝑅, NS), 𝑧) ⟩

DProc( {𝑟 }, 𝑞) = ⟨{𝑟 } ∪ {⟨dn(𝑞), CNAME, IN,ttl(𝑟 ), 𝑑, 1⟩ }, ⟨𝑑, ty(𝑞) ⟩⟩
where 𝑑 = dn(𝑞) [dn(𝑟 ) ↦→ ans(𝑟 ) ]

Glue(𝑅, 𝑧) = 𝑅 ∪ {𝑟 ∈ 𝑧 | ∃ 𝑟 ′ ∈ 𝑅. ans(𝑟 ′) = dn(𝑟 ) ∧ ty(𝑟 ) ∈ {A, AAAA}}
Syn(𝑅,𝑑) = 𝑅 ∪ {⟨𝑑, 𝑡, IN, 𝜏, 𝑎, 1⟩ | ∃ 𝑑′. ⟨𝑑′, 𝑡, IN, 𝜏, 𝑎, 0⟩ ∈ 𝑅 }

Nameserver lookup for a query P(zone) × query→ answer

ServerLookup(𝑍,𝑞) =
{
ZoneLookup(𝑧,𝑞) N(𝑍,𝑞) = {𝑧 }
⟨Refused, ∅⟩ N(𝑍,𝑞) = ∅

N(𝑍,𝑞) = maxdn {𝑧 ∈ 𝑍 | dn(𝑧) ≤ dn(𝑞) }
ZoneLookup(𝑧,𝑞) = RRLookup( {𝑟 ∈ max<𝑞,𝑧 𝑧 }, 𝑞, 𝑧)

Figure 3: Authoritative DNS lookup semantics.

zone has to satisfy. We write dn(𝑧) to mean the domain name for a
zone 𝑧, which is stored in this SOA record.

We model a resource record 𝑟 ∈ record = ⟨𝑑, 𝑡, 𝑐, 𝜏, 𝑎, 𝑏⟩ as a tu-
ple with six components: (1) a domain name𝑑 ∈ domain, (2) a record
type 𝑡 ∈ type = {A, AAAA, MX, NS, DNAME, CNAME, SOA, . . .} ∪ {N}
representing either the kind of data the record holds (e.g., AAAA for
an IPv6 address) or the type N to represent empty data (we explicitly
model empty non-terminals [32, 37] as resource records contain-
ing this type N), (3) the record class 𝑐 = IN for the internet, (4) the
time-to-live value for the record 𝜏 ∈ N that defines the number of
seconds for which the record can be cached, (5) the answer 𝑎 ∈ Σ∗

which gives the DNS result as a string, and finally (6) a boolean
value 𝑏 that marks whether a record was synthesized from another.

We write dn(𝑟 ) for the domain name of record 𝑟 , ty(𝑟 ) for the
type, class(𝑟 ) for the class, ttl(𝑟 ) for the TTL, ans(𝑟 ) for the record
answer, and synth(𝑟 ) for whether the record was synthesized.
DNS queries. A DNS query 𝑞 = ⟨𝑑, 𝑡⟩ is a tuple containing a do-
main name𝑑 ∈ domain and a query type 𝑡 ∈ type. A user that needs
the IPv4 address might send a query ⟨www.mybankcard.com, A⟩ to
ask for it. As with resource records, we write dn(𝑞) to mean the
domain name of query 𝑞, and ty(𝑞) to mean the query type.

The remaining definitions (5) – (7) in Figure 2 are used to define
the order in which DNS prioritizes resource records for a given
query.Match (6) determines if a record is relevant for a given query
(i.e., a potential match). The Rank (7) function for a record, query,
and zone returns a tuple of integer values; the indicator function
(I) returns 1 if the predicate is true and 0 otherwise. The Rank
function then induces a strict partial order (<𝑞,𝑧 ) on records (7)

by comparing the resulting tuples lexicographically from left to
right (◁). The ranking is over four values: (1) whether the record
is a match for the query (note that there will always be at least
one match, e.g., the SOA record for queries that are not refused by
the server §3.3), (2) if there is a zone cut (i.e., an NS record for a
subdomain), (3) the length of the match between record and query,
(4) and finally whether it is a wildcard match as a tiebreaker.
DNS answers. We model a DNS answer 𝑎 = ⟨𝑥,𝑦⟩ as a pair of a
tag 𝑥 ∈ {Ans,AnsQ, Ref,NX, Refused, ServFail} indicating the
type of answer (e.g., an answer Ans, a delegation Ref, a rewrite
AnsQ, etc.), and data 𝑦, which is a set of resource records 𝑅 holding
pertinent information when 𝑥 ≠ AnsQ and is a pair ⟨𝑅, 𝑞′⟩ of a set
of records 𝑅 and a new query 𝑞′ resulting from a rewrite operation
when 𝑥 = AnsQ. The answer contains a set of resource records
because multiple records might be relevant for a query (e.g., there
might be multiple NS records for a domain).

3.2 DNS Semantics

Given these definitions, we now formally define how DNS resolves
user queries.Wemodel the DNS system as a 4-tuple,𝐶 = ⟨𝑆,Θ, Γ,Ω⟩,
called a configuration 𝐶 , where:

• 𝑆 is a set of nameservers (e.g., ns1.fnni.com). We leave
nameservers as opaque objects and associate themwith other
information through functions.

• Θ ⊆ 𝑆 is a set of “root” nameservers for 𝑆 .
• Γ : 𝑆 → P(zone) is a function from a nameserver to the
zones for which that nameserver is authoritative.
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DNS resolution query × config × N→ P(answer)

Resolve(𝑞, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘) =
⋃

𝑠∈Θ Resolve(𝑠, 𝑞, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘)

Resolve(𝑠, 𝑞, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘) =



{ ⟨ServFail, ∅⟩} 𝑠 = ⊥ ∨ 𝑘 = 0
Resolve(𝑞′, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘 − 1) 𝑠 ≠ ⊥, 𝑘 > 0, 𝑎 = ⟨AnsQ, ⟨𝑅, 𝑞′⟩⟩ , N(Γ (𝑠), 𝑞′) = ∅
Resolve(𝑠, 𝑞′, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘 − 1) 𝑠 ≠ ⊥, 𝑘 > 0, 𝑎 = ⟨AnsQ, ⟨𝑅, 𝑞′⟩⟩ , N(Γ (𝑠), 𝑞′) ≠ ∅⋃

𝑟∈T (𝑅,NS) Resolve(Ω (ans(𝑟 )), 𝑞, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘 − 1) 𝑠 ≠ ⊥, 𝑘 > 0, 𝑎 = ⟨Ref, 𝑅⟩
{𝑎} otherwise
where 𝑎 = ServerLookup(Γ (𝑠), 𝑞)

Figure 4: DNS Recursive resolution semantics.

• Ω : 𝐷 → 𝑆 ∪ {⊥} is a function from a domain name to the
nameserver identified by that name or⊥ if no corresponding
nameserver exists.

We define the semantics of DNS in two parts: first we define how
a single authoritative nameserver processes a query locally, and
then using this formulation, we define DNS resolution.

3.3 Authoritative Nameserver semantics

Given a set of zone files 𝑍 and a query 𝑞, the definition of Server-
Lookup at the bottom of Figure 3 defines the lookup performed at a
nameserver for the query. The result of this lookup is a DNS answer.
The first step is to find the zone 𝑧 that has the longest matching
prefix (dn(𝑧)) with the domain in the query (dn(𝑞)) — the function
N . The notation𝑚𝑎𝑥𝑑𝑛 selects those zones with maximal domain
names according to the domain name partial order, among those
that are prefixes of the query domain name. For example, if a name-
server has zones for com and gmail.com and the user’s query is for
help.gmail.com, then the nameserver will choose the gmail.com
zone to answer the query. If there is such a matching zone 𝑧, then
ServerLookup calls ZoneLookup to get an answer by evaluating
the query against the zone file. Otherwise, the nameserver refuses
(Refused) to perform the lookup operation as it could not find a
relevant zone.

ZoneLookup selects the appropriate resource records 𝑟 for the
zone 𝑧 by choosing the maximal elements with respect to the query
(<𝑞,𝑧 ) as defined in equation (7) in Figure 2. The set of records
passed to RRLookup will necessarily have the same domain name,
i.e., dn(𝑟1) = dn(𝑟2) for any 𝑟1, 𝑟2 in the set. However their types
may differ. Thus, for such a set 𝑅, we simply write dn(𝑅) to refer
to the domain name for elements in this set.

The RRLookup function takes a set of resource records 𝑅 and a
query 𝑞 along with the zone 𝑧 and produces an answer. The goal of
RRLookup is to return either (1) an answer (Ans), if the resource
records 𝑅 are sufficient to answer the query 𝑞, (2) a referral (Ref), if
records 𝑅 cannot answer the query 𝑞 but indicate who might have
the answer, (3) an intermediate answer 𝑟 ′ and a query 𝑞′ (AnsQ), if
the resource records 𝑅 establish that the query 𝑞 would be modified
to query 𝑞′ due to resource record 𝑟 ′, or (4) an error message (NX),
indicating that the domain does not exist.

RRLookup implements the DNS resolution process given in RFC
6672 §3.2 as server algorithm (SA) [42]. Note that we exclude SA
steps 1 and 5 since the formal model does not capture dynamic
elements like caches. Step 2 of SA is captured by N stated earlier.
When the records’ domain name exactly matches the query, the

ExactMatch function is applied (SA, steps 3A, 3B). Otherwise, if
it is a wildcard domain that matches the query domain, the Wild-
cardMatch case will apply (SA, step 3C). If the records contain a
matching DNAME record, which is only possible when the other two
cases do not apply, then the query will be modified according to
the Rewrite function (SA, step 3C). If no such record exists, DNS
will delegate the query to another nameserver if it has an NS record
(Delegation) (SA, step 3B). Finally, if all else fails, the nameserver
will return NXDOMAIN (non-existent domain, SA, step 3C).

The Exact Match andWildcard Match cases are both broken
down further into several cases. For the Exact Match case, if there
is a authoritative record with the same type as the query, then the
nameserver will simply return this record (SA, step 3A). Of all the
records passed to RRLookup, a zone 𝑧 is authoritative of all the
records except for NS records (zone cut) not accompanied by an SOA
record. Otherwise, if there is a CNAME record (SA, step 3A), then the
nameserver will perform a rewrite (AnsQ), returning the relevant
records 𝑅, as well as a new query domain given by ans(𝑞) with
the same type (ty(𝑞)). If there is no CNAME record, but there is a
non-authoritative NS record, then the nameserver will perform a
Delegation (SA, step 3B). Finally, if all else fails, it will simply
return an answer with no information (∅).

The Wildcard Match case is similar to the Exact Match case,
except it will perform synthesis (Syn) to generate a new set of
records specializing the wildcards. For instance, a lookup for a query
with domain email.com on a set with a single wildcard record
*.com generates a (cachable) synthesized record for email.com.

The Rewrite case for DNAME records returns AnsQ with records
and a new, rewritten query. The new query is given by DProc,
which generates and adds a new synthesized CNAME record for the
answer and substitutes the matching prefix of the query with the
rewrite described in the record answer (dn(𝑞) [dn(𝑟 ) ↦→ ans(𝑟 )]).
The DNS adds these CNAME records to the answer to facilitate
caching — future queries are rewritten based on the cached CNAME
record (SA, step 3C). The Delegation case returns the NS records
along with the necessary A and AAAA glue records (SA, step 6).

3.4 Recursive Resolution Semantics

Now that we have formally defined how a nameserver answers
a query 𝑞, we can use this definition to formalize the process of
recursive resolution (Figure 4). We define two functions named
Resolve that return a set of possible answers. The functions return
sets of answers in order to capture the nondeterminism inherent in
DNS. The first function takes a query 𝑞, a configuration ⟨𝑆,Θ, Γ,Ω⟩,
and a fuel parameter 𝑘 , which is used to imitate the mechanism
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Figure 5: Label Graph used for equivalence class generation

for the zone files from Figure 1. Note, only the domain name

(𝑑) field of the records are used but not the answer (𝑎) field.

The dotted red edge represents the DNAME redirection of f .

used by DNS to ensure that resolution terminates. The function
works by resolving the query 𝑞 at each root nameserver 𝑠 ∈ Θ,
taking the union of their results.

The second Resolve function performs resolution at a specific
nameserver 𝑠 . There are several cases based on the result of Server-
Lookup. In the first case, if the resolver has already exceeded the
execution bound 𝑘 or the input is a ⊥ due to a nameserver lookup
failure in Ω from a recursive call of Resolve, it returns ServFail
with no records. Otherwise, if 𝑠 returns a rewrite AnsQ, and does
not have a local zone that can process the rewrite (N(Γ(𝑠), 𝑞′) = ∅),
then DNS resolves the new query𝑞′ starting over at the root. If there
is a local zone at 𝑠 , then it processes 𝑞′ at 𝑠 . If 𝑠 returns a referral
Ref, then the function unions the results from nondeterministically
resolving the query at each nameserver identified in the returned
NS records (Ω(ans(𝑟 ))). Finally, if ServerLookup returns any other
kind of answer, Resolve simply returns that answer ({𝑎}).

4 A FAST VERIFICATION ALGORITHM

We leverage the model in §3 to present a fast verification algorithm
based on the enumeration of query equivalence classes (ECs).

4.1 Equivalence Class Generation

The idea with our approach is that, instead of enumerating all pos-
sible queries, we can construct a collection of equivalence classes of
queries (sets of queries that will be resolved the same way by DNS).
Intuitively, two DNS queries are in the same EC if the queries are
resolved locally in the same way (and rewritten similarly) at every
nameserver. We define this notion of equivalence more formally
and prove that it is correct in § 5. The set of ECs our algorithm
computes need not be, and indeed is not, always minimal.

Other verification tools such as Veriflow [29] and Atomic Predi-
cates [47, 48] use a similar approach in the context of packet for-
warding. However, Veriflow’s technique does not support query
rewrites, which we require in the context of DNS. Atomic Predicates
does support query rewrites but is overly general for our purposes
and hence more expensive than necessary. For example, even in
the absence of rewrites, using Atomic Predicates to compute ECs
for DNS would require a quadratic number of predicate intersec-
tions. In contrast, we leverage the hierarchical, tree-like structure
of domain names to reduce this cost. Specifically, we show in §5
that in the absence of DNAME rewrites, our approach computes the
set of ECs in linear time.

Label graph construction. As a first step to generate query ECs,
our algorithm builds a label graph, which is the union of the do-
main names of all the records that appear in any zone file at any
nameserver. Consider again the running example from Figure 1: the
corresponding label graph is shown in Figure 5. The label graph is
rooted at 𝜖 and every domain name that appears as the key of some
resource record in some zone file is represented in the graph as a
path (sequence of labels) starting from the root. For instance, name-
server ns1.fnni.com has a DNAME record for mybankcard.com, so
mybankcard shows up as a node beneath the node for com.

For DNAME records, we also add the rewrite target for the record
to the label graph, along with a dashed line between the source and
target: because the answer for the mybankcard.com DNAME record
is bankcard.com, a line appears from mybankcard to bankcard.

Finally, for every node (label) in the graph, we add an 𝛼 child,
which represents an arbitrary sequence of labels 𝛼 = 𝑙𝑘 ◦ . . . ◦ 𝑙0
such that 𝑙0 is unique from its siblings.
Path enumeration. Every path through the label graph from the
root corresponds to several equivalence classes, one for each query
type. The algorithm begins by enumerating all paths starting from
the root. Whenever it encounters 𝛼 , it constrains it to exclude
its siblings. For the example in Figure 1, we start to compute the
following ECs, one for each type 𝑡 ∈ type:

(1) ⟨𝜖, 𝑡⟩
(2) ⟨com ◦ 𝜖, 𝑡⟩
(3) ⟨bankcard ◦ com ◦ 𝜖, 𝑡⟩
(4) ⟨www ◦ bankcard ◦ com ◦ 𝜖, 𝑡⟩
(5) ⟨𝛼 ◦ www ◦ bankcard ◦ com ◦ 𝜖, 𝑡⟩
(6) ⟨email ◦ bankcard ◦ com ◦ 𝜖, 𝑡⟩
(7) ⟨𝛼 ◦ email ◦ bankcard ◦ com ◦ 𝜖, 𝑡⟩

At this point, the algorithm encounters the wildcard (∗) label under
bankcard. For the purposes of building the label graph, we simply
treat wildcards as character labels (‘∗’), as such characters are valid
and will experience an exact match with a wildcard record. We
instead use the 𝛼 labels to represent ECs for domains not explicitly
mentioned in the zone files. At this point, the algorithm produces
the ECs:

(8) ⟨∗ ◦ bankcard ◦ com ◦ 𝜖, 𝑡⟩
(9) ⟨𝛼 ◦ ∗ ◦ bankcard ◦ com ◦ 𝜖, 𝑡⟩
(10) ⟨𝛼 ◦ bankcard ◦ com ◦ 𝜖, 𝑡⟩ 𝛼 [0] ∉ {www, email, ∗}

DNAME rewrites. The next paths traversed are those for
mybankcard.com. Since mybankcard has a DNAME record, we con-
tinue enumerating paths through the dashed edge. However, since
we want to capture the input query before the transformation, we
do not concatenate the target of the rewrite to the path. This results
in a set of ECs that are analogous to those for bankcard.com.

(11) ⟨mybankcard ◦ com ◦ 𝜖, 𝑡⟩
(12) ⟨www ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩
(13) ⟨𝛼 ◦ www ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩
(14) ⟨email ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩
(15) ⟨𝛼 ◦ email ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩
(16) ⟨∗ ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩
(17) ⟨𝛼 ◦ ∗ ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩
(18) ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩ 𝛼 [0] ∉ {www, email, ∗}
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The algorithm would similarly continue to explore paths for
fnni.com and terminates with the EC, ⟨𝛼 ◦ 𝜖, 𝑡⟩, 𝛼 [0] ∉ {com}.
DNAME loops. The label graph can have loops due to DNAME edges.
The first type of loop has both solid and dotted edges; for example,
this type of loop would exist if there were another DNAME edge
from email to mybankcard. In such cases, the algorithm traverses
the loop and continues to generate ECs until the domain name of
the path exceeds the maximum length allowed by DNS. With our
example loop, suppose the algorithm takes the DNAME edge from
mybankcard node and reaches email. After generating the EC given
by (14), it would take the dotted edge back to mybankcard and then
the dotted edge back to bankcard. It then traverses the paths un-
derneath bankcard but with the original query prefix before rewrit-
ing, so it will generate ⟨www ◦ email ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩,
⟨𝛼 ◦ www ◦ email ◦ mybankcard ◦ com ◦ 𝜖, 𝑡⟩, and so on.

The second type of loop is entirely made up of dotted
edges, for example if bankcard had a dotted edge back to
mybankcard. This situation can arise if there is another zone file
for bankcard ◦ com ◦ 𝜖 at a different nameserver with this DNAME
record. This situation constitutes an infinite loop since the length
of the path never increases a query enters the loop. To check for
an infinite loop, each node in the label graph stores the path length
when the algorithm enters the node and checks if the stored length
is equal to the new path length before updating. As soon as the
algorithm detects an infinite loop, it backtracks and continues.

4.2 Symbolic Execution of ECs

To determine the behavior of the equivalence classes, we symboli-
cally execute each EC using our semantics from Figures 2 to 4. To
symbolically execute an EC that starts with 𝛼 , we observe that by
construction 𝛼 cannot match any of the records present at a given
zone file except a wildcard. Therefore, we can leave 𝛼 opaque dur-
ing symbolic execution and simply use this knowledge to precisely
determine the answers for such an EC. Our symbolic execution
algorithm builds an interpretation graph for each EC, representing
all nondeterministic execution traces that are possible in DNS for
that EC. Each node in an interpretation graph represents a call to
the second Resolve function and the node stores the nameserver
𝑠 identified by 𝑑 , the query 𝑞, and the answer 𝑎 returned by the
ServerLookup function. An edge is drawn from one node to the
other if the Resolve at the parent node returns a Ref to the name-
server of the child node.

Symbolically executing an EC separately for each query type
leads to an inefficient implementation; DNS supports dozens of
record types, and there is substantial overlap in how they are treated
during execution. Therefore, GRoot executes the ECs for all record
types at once using a compact bitset representation for types, split-
ting nodes when different types experience different behaviors
according to Figures 3 and 4. The result is a single graph represent-
ing multiple interpretation graphs.

Figure 6 shows the result of symbolic execution for the running
example for three equivalence classes, which are compactly repre-
sented as: ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩. We show just
these three records types for simplicity. The execution starts at
a.gtld-servers.net and then proceeds to either ns1.fnni.com
or ns2.fnni.com from NS referrals. In either case, the execution
has a DNAME rewrite before eventually splitting the record types

Delegation Inconsistency

A parent node with the Ref tag and a child node with the Ans
tag do not have the same set of NS and A records for delegation.
Lame Delegation

Interpretation graph has a node with the Refused tag.
Missing Glue Records

Node answer contains NS records but not the A (glue) records.
Non-Existent Domain for Service

Sink node return an answer with the NX tag.
Cyclic Zone Dependency

Interpretation graph contains a cycle
Rewriting Loop

Interpretation graph contains a cycle with at least one rewrite.
Query Exceeds Maximum Length

Query at some node exceeds the maximum label or total length.
Answer Inconsistency

Different sink nodes return different answers.
Zero Time To Live

Sink node returns an answer with TTL value set to 0.
Rewrite Blackholing

A path has a rewrite and ends at a node with NX tag.

Table 2: Bug finding Implementation for Table 1.

into two cases: one for {A} and another one for {MX, TXT} to capture
the diverging behaviors. GRoot encodes the relevant set of types
at each node using a fixed-size bitset, with one bit per type.

4.3 Checking Properties

The representation for ECs and their interpretation graphs facili-
tates efficient checking for a wide variety of properties. We write
property checkers as custom graph algorithms (§6) that process
each of the interpretation graphs. A property that is true of all
interpretation graphs holds for all possible executions of Resolve,
for all possible queries. Table 2 summarizes the implementation of
checkers for the bugs listed in Table 1. Because the interpretation
graph contains full information about the execution traces, it can
also be used to enforce non-functional properties, for example re-
lated to performance, such as a bound on the number of rewrites
in any execution of Resolve.

5 PROOF OF CORRECTNESS

We prove our approach with GRoot is correct in two steps. First,
we show that our equivalence class generation algorithm computes
classes of queries that adhere to a restrictive notion of equivalence
called strong equivalence. Next, we prove that strong equivalence
implies equivalence for DNS resolution.

A challenge for defining equivalence of DNS resolution is that
queries that match all the same zone records can still end up
with different answers due to record synthesis (Syn from Fig-
ure 2), which generates specialized records for use in the cache.
For example, two queries with domain names a.mybankcard.com
and b.mybankcard.com may both match the wildcard record
*.mybankcard.com, which will generate new records, one for a
and one for b with the exact query names. Since we do not model
the effect of caching in this paper, we want to prove equivalence of
DNS resolution up to such differences. To do so, we define a notion
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s : a ◦ gtld-servers ◦ net ◦ 𝜖
q : ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩
a :

〈
Ref,

{
a , b , c

}〉
s : ns1 ◦ fnni ◦ com ◦ 𝜖
q : ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩
a :

〈
AnsQ, DProc

({
f
}
, ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩

)〉
s : ns1 ◦ fnni ◦ com ◦ 𝜖
q : ⟨𝛼 ◦ bankcard ◦ com ◦ 𝜖, {A}⟩
a :

〈
Ans, Syn

({
j
}
, 𝛼 ◦ bankcard ◦ com ◦ 𝜖

)〉 s : ns1 ◦ fnni ◦ com ◦ 𝜖
q : ⟨𝛼 ◦ bankcard ◦ com ◦ 𝜖, {MX, TXT}⟩
a : ⟨Ans, ∅⟩

s : ns2 ◦ fnni ◦ net ◦ 𝜖
q : ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩
a :

〈
AnsQ, DProc

({
m
}
, ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩

)〉
s : ns2 ◦ fnni ◦ net ◦ 𝜖
q : ⟨𝛼 ◦ bankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩
a : ⟨AnsQ, ⟨Syn

(
{ q }, 𝛼 ◦ bankcard ◦ com ◦ 𝜖

)
,

⟨www ◦ bankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩⟩⟩

s : ns2 ◦ fnni ◦ net ◦ 𝜖
q : ⟨www ◦ bankcard ◦ com ◦ 𝜖, {A}⟩
a :

〈
Ans,

{
o
}〉 s : ns2 ◦ fnni ◦ net ◦ 𝜖

q : ⟨www ◦ bankcard ◦ com ◦ 𝜖, {MX, TXT}⟩
a : ⟨Ans, ∅⟩

Figure 6: The interpretation graph based on the zone files shown in Figure 1 for types {A, MX, TXT} for the equivalence classes

given by the schematic query: ⟨𝛼 ◦ mybankcard ◦ com ◦ 𝜖, {A, MX, TXT}⟩ with 𝛼 [0] ∉ {www, email, ∗}.

of equivalence between answers that ignores synthesized records.
In particular, we define a relation 𝑎1 ≈ 𝑎2 to mean two answers are
equivalent up to synthesized records. For brevity, we defer defining
≈ to the appendix.

We now describe our strong equivalence relation. Strong equiva-
lence views queries as equivalent if they are treated equivalently at
each individual nameserver 𝑠 , even if that nameserver can never be
contacted with that particular query.

Definition 5.1 (Strong equivalence). For a given configuration
𝐶 = ⟨𝑆,Θ, Γ,Ω⟩, the binary relation ∼𝐶 on queries, which we
call the strong equivalence relation, is the greatest relation such
that 𝑞1 ∼𝐶 𝑞2 implies that for all servers 𝑠 ∈ 𝑆 , where 𝑎𝑖 =

ServerLookup(Γ(𝑠), 𝑞𝑖 ), we have (1) N(Γ(𝑠), 𝑞1) = N(Γ(𝑠), 𝑞2),
(2) 𝑎1 ≈ 𝑎2, and (3) for any rewrites 𝑞′1 ∈ query(𝑎1) and
𝑞′2 ∈ query(𝑎2), 𝑞′1 ∼𝐶 𝑞′2.

The next step in proving our approach is correct, is to show that
the algorithm presented in §4.1 computes equivalence classes of
queries satisfying the ∼𝐶 relation.

Theorem 5.1 (EC generation sound). For a given configuration𝐶 =

⟨𝑆,Θ, Γ,Ω⟩, if two queries 𝑞1 and 𝑞2 are in the same EC computed
by the algorithm, then 𝑞1 ∼𝐶 𝑞2.

Proof. Direct by case analysis of ServerLookup. Full proofs
are included as extra material in the appendix. □

Finally we prove that strong equivalence implies equivalence of
DNS resolution.

Theorem 5.2 (Soundness). For all𝐶 , 𝑞1, 𝑞2, and 𝑘 , if 𝑞1 ∼𝐶 𝑞2, then
Resolve(𝑞1,𝐶, 𝑘) ≈ Resolve(𝑞2,𝐶, 𝑘).

Proof. We start by proving a slightly stronger invariant:
Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) ≈ Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) for all
𝑠, 𝑖 , and show that it implies the result. The proof given in appendix
proceeds by induction on the length of resolution step 𝑖 . □

In the appendix we also prove two other theorems about our
technique. First we prove a completeness result.

Theorem 5.3 (Completeness). For a configuration 𝐶 , each query 𝑞
belongs to at least one computed equivalence class.

Together, soundness and completeness imply that our technique
indeed performs verification: all possible queries are represented
by the ECs, and all queries within an EC have the same behavior.

Second, we prove that, in the absence of DNAME rewrites, our
algorithm will compute a linear number of ECs in linear time with
respect to the number of zone records. Given that CNAME rewrites
are comparatively much more common that DNAMEs in practice
(§7), this result implies that in many cases GRoot can verify DNS
configurations very efficiently.

Theorem 5.4 (Linear time). In the absence of DNAME records, for
a collection of zone files with 𝑛 resource records, our algorithm
computes 𝑂 (𝑛) equivalence classes in 𝑂 (𝑛) time.

Given that the total number of possible DNS queries is
∑253
𝑖=0 38

𝑖

(for 38 valid characters), this theorem shows that GRoot can pro-
vide a massive reduction in complexity.

6 IMPLEMENTATION

GRoot is implemented in over 4300 lines of C++ code and uses the
Boost Graph Library [5] as well as custom zone file parsers. GRoot
takes as input a directory containing a collection of zone files as
well as an optional file specifying what properties to check. In the
absence of this properties file, GRoot checks for a set of bugs that
are considered always harmful (e.g., rewrite blackholing and loops).

Users implement new static analyses in GRoot as simple C++
functions that process an interpretation graph. To make this easier,
we provide three separate checker APIs. The first lets the user
process each node in the interpretation graph in isolation, which
can be used for simple checks such as: “query X should never return
NXDOMAIN”. The second lets the user process each path through the
graph in isolation, and the third provides the entire graph.

Since each interpretation graph is checked separately by a prop-
erty checker, the graphs can be checked in parallel. Our implemen-
tation takes advantage of this and also pipelines EC generation
with symbolic execution: as soon as an EC is generated, GRoot
uses an idle worker thread to build the interpretation graph for that
EC and checks the properties on the resulting graph.

Since strings are used pervasively in GRoot to represent labels
in the zone graphs, label graph, and interpretation graph, and since
adding new records to each of these graphs involves multiple string
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comparisons, we opted to use a custom string interning strategy
that replaces string labels with unique ids, for faster operations.

GRoot is available as open source software1.

7 EVALUATION

To evaluate GRoot we aim to show (1) it can find bugs in real DNS
configurations, and (2) it can scale to large sets of zone files. We
describe our methodology and results next.

7.1 Networks studied

We evaluate GRoot on zone files from three networks:
A university network. We ran GRoot on the DNS configura-
tions obtained from a large campus network. The configurations
for the network are managed in a decentralized fashion: the cam-
pus IT service manages the DNS tree starting from the subdomain
campus.edu2 The campus.edu zone has four authoritative name-
servers (ns{1,2,3,4}.dns.campus.edu), which are slaves of a hid-
den master server. The Infoblox platform [25] is used to maintain
the master server and keep the slaves up-to-date. The campus.edu
zone file has delegations for 1850 subdomains and each department
in the university is responsible for managing a subset of those sub-
domains. Of these subdomains, 895 have secondaried their zones
back to the four campus nameservers, which also provide authorita-
tive answers for queries related to those subdomains. The remaining
955 subdomains require delegation via NS records.

We use the campus.edu zone file and the zone files of the 895
subdomains that are secondaried by the campus nameservers for
our experiments, since we are able to obtain these zone files through
zone transfers. In total the campus.edu zone file has 8555 records
and there are a total of 111,539 records across the remaining 895
subdomains. Figure 7(a) shows the cumulative distribution of sub-
domains to the number of resource records that they contain.
An infrastructure service provider.We ran GRoot on 1241 in-
ternal zone files of a large infrastructure service provider. All the
zones were independent i.e., there isn’t a zone that is a subdomain
of another zone in the dataset. All of the zone files are assumed to
be taken from a single name server. The data set consists of around
3.6 million resource records with the largest zone file accounting
for 1.6 million records.
DNS census data. This data set is publicly available [11]. It con-
sists of around 2.6 billion resource records (157 GB) that were
collected through live DNS queries in 2012-2013. These records
are stored as CSV files — one file for each DNS record type
(A, AAAA, CNAME, DNAME, MX, NS, SOA, TXT). These records are stored
lexicographically: by hostname and time. For each hostname and
each type, we picked the resource records corresponding to the
latest timestamp. This leaves 1.05 billion resource records. We par-
tition this set into zone files by using the SOA records and the DNS
namespace hierarchy.

While creating the zoneswe also addedNS records alongwith the
necessary glue records to both parent and child so that there will not
be any delegation inconsistencies or lame delegation. The dataset
consists of 285 top-level domains (TLDs). For our experiments,
we considered all the second-level domains (for example, co.uk.)

1https://github.com/dns-groot/groot
2The university name is anonymized as "campus."
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work. (b) Number of 2nd-level domainswith a given number

of subzones for DNS census.

that have at least one subdomain zone file under them. There are
1,368,523 such domains totalling over 65 million resource records.
The synthesized dataset and the software artifact are available on
Zenodo [26]. Figure 7(b) shows the distribution of second-level
domains to the number of subzones they contain.
Features used. Table 3 shows a summary of the features used in
the two datasets. For the campus network, there were 63 wildcard
records and over 4000 CNAME records. However, the configurations
did not make use of DNAME records. In contrast, the part of the
DNS census dataset that we used included over 200 DNAME records
and over 2 million CNAME records. However, it did not have any
wildcards. This is likely due to the dataset being collected from live
DNS queries, which are almost never directly for wildcard resources.
The service provider dataset is dominated by the CNAME records as
the provider employs CNAME chains frequently to map queries.

7.2 Functionality Experiments

7.2.1 University network. We use the data from the university net-
work to evaluate whether GRoot can find bugs on a real network.
We performed two different classes of checks using GRoot (sum-
marized in Table 4) based on properties described in Table 1. For the
properties in Table 1 but not in Table 4, GRoot was not applicable
for this network (e.g., answer inconsistency due to master-slave
replication). Properties shown below the dashed line showcase
GRoot’s ability to help operators explore and understand the be-
havior of their DNS configurations. Violations of these properties
are not necessarily bugs but are interesting behaviors that an oper-
ator may be interested to examine. For example, we used GRoot
to identify lookups that involve rewrites outside of the campus
domain — most are (likely) intentional. Because GRoot is complete,
it reported all possible ways in which such rewrites can occur.
Property Violations. Violations of the first seven properties in
Table 4 represent true misconfigurations and are common oper-
ational and configuration errors described in RFC 1912 [3]. We
contacted operators, and those that responded confirmed our find-
ings (because DNS management is decentralized there are many
administrators responsible for these domains and we did not hear
back from all of them). We discuss some example violations here:

GRoot flagged 49 domains of the form 𝛼.campus.edu that have
a delegation inconsistency. These 49 domains are managed by 25
different administrators. We emailed all of them (obtaining email
addresses from the SOA records); seven emails bounced, and nine

https://github.com/dns-groot/groot
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Dataset SOA A NS CNAME DNAME MX TXT Wildcard Other

Campus 895 97,951 9,209 4,259 0 1,978 363 63 883
Service Provider 1,239 110,052 8,740 3,442,892 0 1,878 1,339 2,059 3,586
Census 6,668,062 18,598,682 29,855,307 2,168,115 218 6,965,866 1,301,472 0 118,629

Table 3: Summary of features used in the two datasets studied.

Property Number of issues

Delegation Consistency 49★
No lame delegation 9★
No rewrite loops 2★
No missing glue records 1★
No rewrite blackholing 48★
No query exceeds maximum length 0★
No zero TTL 0★

No rewrite to outside domain 378†

No resolution at an external NS 324†

Number of rewrites ≤ 2 24†

Table 4: Properties checked on the campus network and the

number of cases GRoot reported. Cases in red (★) are bugs

while orange(†) are warnings.

people responded, in all cases acknowledging the inconsistency
as a misconfiguration. Some of the NS records in the campus.edu
were incorrectly pointing to a web server instead of the zone’s
authoritative name server. One operator commented: “we haven’t
noticed this discrepancy because we almost never use DNS names
for DNS servers, we use IPs.” Another operator explained: “the short
answer is negligence.”

Some of these violations affect performance. Lame delegation
affects the mean response time of DNS lookups: a lookup on some
name servers will fail, meaning the resolver would then need to con-
tact a different name server. The same is true of rewrite loops where
we found CNAME records that were rewritten to the same record.
In both cases of rewrite loops, the relevant admins confirmed the
misconfigurations and removed the corresponding entries. Other
forms of loops can also add to resolution latency. This was the case
for the missing glue record bug where a resource record

dept.campus.edu IN NS dc1.dept.campus.edu

existed but had no A record for dc1.dept.campus.edu. Resolving
dc1.dept.campus.eduwould lead the resolver to lookup the IP ad-
dress, only to end up back at this record. GRoot flagged 48 domain
names that were rewritten to a domain name not existing in the
zone files, causing DNS to return NXDOMAIN. When asked, the op-
erators replied, "they are CNAME entries that were missed during a
prior retirement. These are entries that were orphaned accidentally
when the source server was removed a few years back. Our tools
do not auto clean up the CNAME aliases and this sometimes occurs.
We do not actively black-hole server DNS entries."

GRoot found out that there is no input query that can lead to
the violation of the last two properties in this network.
Configuration Understanding. The properties at the bottom of
Table 4 demonstrate GRoot’s utility for understanding and explor-
ing configurations. For example, GRoot found 378 cases where
the query is rewritten to a domain that is not a subdomain of
campus.edu. GRoot guarantees that these 378 are the only cases
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under campus.edu that can be rewritten to outside domains. Hence
an admin can manually or automatically inspect the results to spot
errors or ensure policy is respected, with the assurance that all
possible scenarios are covered.

In fact, the other two properties that we checked with GRoot
identified actual misconfigurations. One check identified lookups
that use a name server not under campus.edu. Most of these name-
servers belong to AWS or Cloudfare and are likely intentional. But
one name server was 𝛼.campus.ed which looked suspicious; when
asked the admin said: “Thanks for the information about the dele-
gation. I’ve corrected the typo.”

The other check identified 24 queries that are rewritten more
than twice during lookup. This is unusual as the RFC [37] suggests
CNAME should point at the primary name and not an alias. Long
CNAME chains increase the query response time and can lead to
loops. Further, certain resolvers do not follow a chain if the length
increases beyond a threshold and instead return ServFail [7].

7.2.2 Service Provider. We also performed checks based on the
properties described in Table 1 on the zone files from the service
provider. Since there are no parent-child zones in the data set, all
the violations GRoot flagged were related to rewrite blackholing.
GRoot flagged around 160k interpretation graphs out of 9.2 million
as experiencing rewrite blackholing. Upon further investigation
with the service provider, they informed us that nearly all the cases
are due to incomplete decommissioning of host names that are no
longer in use.

7.3 Performance Experiments

All experiments were run on an 8-core Intel i7 processor with
32GB of RAM running Windows 10 using 8 threads. On the campus
network data the total time to parse all of the zone files and build the
label and zone graphs was 1.5 seconds. GRoot generated 212,113
graphs and checked properties for the graphs in 7 seconds. The
label graph used to generate equivalence classes had 105,030 nodes
with 105,029 edges and the interpretation graphs generated had on
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average 6 nodes with 5 edges while the maximum graph size was
17 nodes. The median graph size was also around 6 nodes.

We next explore the ability of GRoot to scale to larger zone files
by checking the same properties on the DNS census data.

Figure 8 shows the time taken in seconds by GRoot for building
the label graph and checking the properties for the 1,368,523 do-
mains. The median time is taken when multiple domains have the
same number of resource records. The total time increases roughly
linearly with the number of resource records. The two other sec-
ondary factors which affect the running time are the number of
subdomains and the average size of the interpretation graphs built.
The more the number of subdomains and the larger the graphs built,
GRoot takes longer to finish. The figure also shows that GRoot
can scale to tens of millions of records.

8 DISCUSSION AND LIMITATIONS

To our knowledge GRoot is the first tool that allows operators to
verify the correctness of their DNS configuration (zone) files, or
those of their hosted customers.
Incremental deployment. GRoot can be incrementally deployed
for several reasons. First, operators can independently verify their
local zone files. Second, companies such as Akamai, Microsoft,
Google, and Amazon not only manage their own DNS but also that
of their customers [1, 2, 19, 36]. Hence, these companies have a
greater opportunity and incentive to verify customer configura-
tions on their behalf, making it much easier for those customers to
leverage GRoot as well.
Static not dynamic bugs. As a “compile time" checker, GRoot
does not model dynamic phenomena that affect DNS results such as
caching, server failures, and network unreachability. GRoot must
be complemented by live testing tools to account for bugs caused
by such phenomena.
Local not global correctness. Because GRoot can only analyze
the zone files that it is given, it can only verify the correctness of the
DNS configuration of the organization that owns those files. The
end-to-end correctness of the DNS configuration (globally) hinges
on other organizations doing the same.
Snapshot not incremental. GRoot verifies a snapshot of the
current zone files which may be inefficient when changes to zones
files are small and frequent. We leave optimizing GRoot for small
incremental changes for future work.
Properties on single queries not multiple. Our current imple-
mentation only supports properties for individual DNS queries.
However, our verification approach can be easily modified to sup-
port properties over a set of queries, at the cost of increased memory
and execution times.

9 RELATEDWORK

GRoot is related to several prior lines of work:
DNS testing.Many operators today use blackbox techniques for
checking DNS correctness (e.g., live testing and monitoring). For
example, operators can monitor for ongoing problems through
offerings from commercial vendors, such as ThousandEyes [28],
CheckHost [22] or research tools [40].

These approaches are incomplete because they lack direct knowl-
edge of the configurations and cannot comprehensively explore the

space of possible DNS queries. Therefore, they cannot provide cor-
rectness guarantees. These approaches are further complicated by
artifacts of deployed DNS systems such as caching, load balancing,
and geo-replication. In contrast, GRoot is based on static verifica-
tion of zone files and so gives strong guarantees about correctness.

A relevant approach in this space is linting of DNS configura-
tion files. Tools like dnslint [35] report possible violations of best
practices in configuration files based on a simple syntactic analysis
of the files. Such tools can be effective at discovering certain kinds
of common misconfigurations but cannot perform deeper semantic
analysis (e.g., whether a query might resolve to NXDOMAIN).
DNS modeling. To the best of our knowledge, this paper presents
the first formal semantics for DNS. Perhaps the closest work is
IRONSIDES [8], a DNS server implementation that is provably
robust to data flow exceptions such as unexpected exceptions. How-
ever, IRONSIDES is a particular implementation of DNS and as such
neither provides a formal model for DNS nor can be used to verify
DNS configurations.
Network verification. There is a large body of work on verifying
the network routing layer, and researchers have proposed numer-
ous techniques to perform such verification generally, efficiently,
and incrementally [4, 14, 17, 27, 29, 33, 34]. While the semantics
of routing and forwarding are well understood (e.g., longest prefix
matching), the semantics of DNS is relatively poorly understood
by comparison. As such, we believe our formal model of DNS is
a contribution that can serve as the basis of future work in this
area. More generally, while there are some superficial similarities
between routing and DNS, the specific details are vastly different.
For example, DNS introduces new challenges due to nondetermin-
ism, query rewriting, delegation, and distributed management. For
certain cases, GRoot can generate equivalence classes asymptot-
ically faster than approaches used for routing verification due to
the hierarchical structure of domain names.

10 CONCLUSION

In this paper, we presented GRoot, the first verification tool for
DNS configurations. GRoot operates by generating an exhaustive
set of equivalence classes of DNS queries and then symbolically
computing the DNS resolution process for each class. Properties in
GRoot are added as simple C++ functions that analyze the struc-
ture of the resulting symbolic execution graphs. To show that our
approach is sound, we present a novel formal model of DNS res-
olution and prove that queries in the same equivalence class will
be resolved the same way by DNS. Finally, we demonstrate that
GRoot can efficiently analyze real DNS configurations in practice,
leading to the discovery of numerous misconfigurations.
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APPENDIX A

A collection of resource records 𝑅 (assumed to be IN class) is considered as a well-formed zone 𝑧 if it satisfies all of the following conditions:
(1) There should be exactly one SOA record.

| {𝑟 ∈ 𝑅 | ty(𝑟 ) = SOA} | = 1
(2) No record can be a synthesized one.

⟨𝑑, 𝑡, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 =⇒ 𝑏 = 0
(3) The domain name of the SOA record should be a prefix of the domain name of all the records in 𝑅.

⟨𝑑, SOA, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ⟨𝑑 ′, 𝑡, IN, 𝜏 ′, 𝑎′, 𝑏 ′⟩ ∈ 𝑅 =⇒ 𝑑 ≤ 𝑑 ′

(4) The answer of a CNAME, DNAME and an NS record should be a valid domain name.
⟨𝑑, 𝑡, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ 𝑡 ∈ {CNAME, DNAME, NS} =⇒ 𝑎 ∈ domain

(5) There can be only one CNAME record for a domain name.
⟨𝑑, CNAME, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ⟨𝑑, CNAME, IN, 𝜏 ′, 𝑎′, 𝑏 ′⟩ ∈ 𝑅 =⇒ 𝜏 = 𝜏 ′ ∧ 𝑎 = 𝑎′ ∧ 𝑏 = 𝑏 ′

(6) If there is a CNAME record for a domain name, then there cannot be any other record type for that domain name.
⟨𝑑, CNAME, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ⟨𝑑, 𝑡, IN, 𝜏 ′, 𝑎′, 𝑏 ′⟩ ∈ 𝑅 =⇒ 𝑡 = CNAME

(7) There can be only one DNAME record for a domain name.
⟨𝑑, DNAME, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ⟨𝑑, DNAME, IN, 𝜏 ′, 𝑎′, 𝑏 ′⟩ ∈ 𝑅 =⇒ 𝜏 = 𝜏 ′ ∧ 𝑎 = 𝑎′ ∧ 𝑏 = 𝑏 ′

(8) A domain name cannot have both DNAME and NS records unless there is an SOA record.
⟨𝑑, DNAME, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ⟨𝑑, NS, IN, 𝜏 ′, 𝑎′, 𝑏 ′⟩ ∈ 𝑅 =⇒ ⟨𝑑, SOA, IN, 𝜏 ′′, 𝑎′′, 𝑏 ′′⟩ ∈ 𝑅

(9) If there is a DNAME record for a domain name 𝑑 , then there cannot be any records for domain names for which 𝑑 is a proper prefix.
⟨𝑑, DNAME, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ⟨𝑑 ′, 𝑡, IN, 𝜏 ′, 𝑎′, 𝑏 ′⟩ ∈ 𝑅 ∧ 𝑑 ≠ 𝑑 ′ =⇒ 𝑑 ≰ 𝑑 ′

(10) If there is an NS record for a domain name 𝑑 but not an SOA record, then there cannot be any NS records for domain names for which 𝑑
is a proper prefix.
⟨𝑑, NS, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ¬∃ 𝜏𝑠 , 𝑎𝑠 , 𝑏𝑠 . ⟨𝑑, SOA, IN, 𝜏𝑠 , 𝑎𝑠 , 𝑏𝑠 ⟩ ∈ 𝑅 ∧ ⟨𝑑 ′, 𝑡, IN, 𝜏 ′, 𝑎′, 𝑏 ′⟩ ∈ 𝑅 ∧ 𝑑 < 𝑑 ′ =⇒ 𝑡 ≠ NS

(11) Wildcard domain names can not have a DNAME or an NS record.
⟨𝑑, 𝑡, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ 𝑑 [|𝑑 |] = ∗ =⇒ 𝑡 ≠ DNAME ∧ 𝑡 ≠ NS

(12) The set of resource records 𝑅 are prefix-closed for the domain name of the zone i.e., if there is a resource record whose domain name
𝑑 is different from the domain name of the SOA record, then there has to be a resource record whose domain name 𝑑 ′ is a proper
prefix of 𝑑 and is of length one less. (A real zone file can be made to satisfy this requirement by adding resource records for the empty
non-terminals with the type N we introduced earlier.)
⟨𝑑, 𝑡, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ ⟨𝑑𝑠 , SOA, IN, 𝜏𝑠 , 𝑎𝑠 , 𝑏𝑠 ⟩ ∈ 𝑅 ∧ 𝑑 ≠ 𝑑𝑠 =⇒ ∃ ⟨𝑑 ′, 𝑡, IN, 𝜏, 𝑎, 𝑏⟩ ∈ 𝑅 ∧ 𝑑 ′ < 𝑑 ∧ |𝑑 ′ | = |𝑑 | − 1

APPENDIX B

First we introduce several helpful definitions. The first lets us more easily extract information from DNS answers:

Definition .1 (DNS answer extraction). Given answer 𝑎, we write records(𝑎) to refer the records in 𝑎, tag(𝑎) for the record tag, and
query(𝑎) for the rewritten query (undefined if there is none). For example, if 𝑎 = ⟨AnsQ, ⟨𝑅, 𝑞⟩⟩, then records(𝑎) = 𝑅, tag(𝑎) = AnsQ, and
query(𝑎) = 𝑞. We lift each of these definitions to sets of answers, e.g., query(𝐴) = {𝑞 | 𝑎 ∈ 𝐴, 𝑞 = query(𝑎) is defined}

Definition .2 (Real record extraction). Given a set of resource records 𝑅, we extract those that are not synthesized with real(𝑅) = {𝑟 ∈
𝑅 | synth(𝑟 ) = 0}. This definition of real is lifted to DNS answers as: real(𝑎) = ⟨tag(𝑎), real(records(𝑎))⟩ and to sets of answers pointwise:
real(𝐴) = {real(𝑎), 𝑎 ∈ 𝐴}.

Definition .3 (Equivalence modulo synthesis). Given answer sets 𝐴1 and 𝐴2, we say the sets are equivalence modulo synthesis, written
𝐴1 ≈ 𝐴2, if real(𝐴1) = real(𝐴2).

Theorem 5.1 (EC generation sound). For a given configuration 𝐶 = ⟨𝑆,Θ, Γ,Ω⟩, if two queries 𝑞1 and 𝑞2 are in the same EC computed by
the algorithm, then 𝑞1 ∼𝐶 𝑞2.

Proof. We assume that 𝑞1 and 𝑞2 are computed to be in the same EC, and we introduce variables 𝑎𝑖 for a given server 𝑠:

𝑎1 = ServerLookup(Γ(𝑠), 𝑞1)
𝑎2 = ServerLookup(Γ(𝑠), 𝑞2)

Given these assumptions, we must prove the following three conditions:
(1) N(Γ(𝑠), 𝑞1) = N(Γ(𝑠), 𝑞2)
(2) 𝑎1 ≈ 𝑎2
(3) 𝑞′1 ∈ query(𝑎1), 𝑞′2 ∈ query(𝑎2) =⇒ 𝑞′1 ∼𝐶 𝑞′2
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Assume an arbitrary label graph generated by the EC generation algorithm. Each EC generated by the algorithm corresponds to a path
through the label graph. Assume an arbitrary EC corresponding to path 𝜌 through the label graph, where 𝑞1, 𝑞2 ∈ EC(𝜌). We note that 𝑞1
and 𝑞2 can only differ if the final label in the path is 𝛼 .

Condition (N(Γ(𝑠), 𝑞1) = N(Γ(𝑠), 𝑞2)):
From the definition of N , we must show:

maxdn{𝑧 ∈ Γ(𝑠) | dn(𝑧) ≤ dn(𝑞1)} = maxdn{𝑧 ∈ Γ(𝑠) | dn(𝑧) ≤ dn(𝑞2)}
The sets {𝑧 ∈ Γ(𝑠) | dn(𝑧) ≤ dn(𝑞1)} and {𝑧 ∈ Γ(𝑠) | dn(𝑧) ≤ dn(𝑞2)} select all zones where 𝑞1 and 𝑞2 are prefixes of the domain name. By
virtue of 𝑞1 and 𝑞2 sharing the same path 𝜌 , we now prove that these two sets are equivalent:

Case 1 (𝜌 does not end with 𝛼). In this case, 𝑞1 and 𝑞2 are the same query, and the equality is trivial.

Case 2 (𝜌 ends with 𝛼). In this case there are two possibilities. The first is that 𝑞𝑖 = . . . ◦ 𝑙𝑘+1︸    ︷︷    ︸
𝛼

◦𝑙𝑘 ◦ 𝑙𝑘−1 ◦ . . . ◦ 𝜖 and dn(𝑧) = 𝑙 𝑗 ◦ . . . ◦ 𝜖 for

𝑗 ≤ 𝑘 . In this case, we know that dn(𝑧) ≤ 𝑞1 ⇔ dn(𝑧) ≤ 𝑞2 since 𝑞1 and 𝑞2 have the same shared prefix. The other case is where 𝑗 > 𝑘 . In
this case, we know that dn(𝑧) is given by the SOA record in the zone file, which means that dn(𝑧) will appear in the label tree. However,
if this were the case, then we know that 𝛼 is restricted such that 𝛼 [0] = 𝑙𝑘+1 is not equal to label 𝑘 + 1 in dn(𝑧). As such, dn(𝑧) ≰ 𝑞1 and
dn(𝑧) ≰ 𝑞2.

Condition (𝑎1 ≈ 𝑎2):
By the definition of ServerLookup, and the fact that N(Γ(𝑠), 𝑞1) = N(Γ(𝑠), 𝑞2) from before, there are now two cases. If N(Γ(𝑠), 𝑞1) = ∅,
then 𝑎1 = 𝑎2 = ⟨Refused, ∅⟩. Otherwise, we have N(Γ(𝑠), 𝑞1) = {𝑧} for some 𝑧, and therefore:

𝑎1 = ZoneLookup(𝑧, 𝑞1)
𝑎2 = ZoneLookup(𝑧, 𝑞2)

Expanding the definition of ZoneLookup, we get:

𝑎1 = RRLookup({𝑟 ∈ max<𝑞1,𝑧
𝑧}, 𝑞1, 𝑧)

𝑎2 = RRLookup({𝑟 ∈ max<𝑞2,𝑧
𝑧}, 𝑞2, 𝑧)

The inner set {𝑟 ∈ max<𝑞1,𝑧
𝑧} selects the resource records that are a closest match to the query 𝑞1 and similarly for 𝑞2. These two sets must

be equal for the same reasons as in the proof of the first condition. In other words, if two records can distinguish between 𝑞1 and 𝑞2 in 𝛼 ,
then 𝛼 would have excluded the domains of those records. Specifically, it must be that Rank(𝑟, 𝑞1, 𝑧) = Rank(𝑟, 𝑞1, 𝑧). This can be shown by
showing that each component of the Rank functions are equivalent.

The first components Match(𝑟, 𝑞1) = Match(𝑟, 𝑞2) must be true since dn(𝑟 ) ≤ dn(𝑞1) ⇐⇒ dn(𝑟 ) ≤ dn(𝑞2) since dn(𝑟 ) cannot
equal dn(𝑞1) or dn(𝑞2) (or else they would be in different ECs). Hence dn(𝑟 ) can only be a prefix of both dn(𝑞1) and dn(𝑞2). Similarly,
if dn(𝑞𝑖 ) ∈∗ dn(𝑟 ), then |dn(𝑟 ) | ≤ |dn(𝑞𝑖 ) |. Again assume 𝑞𝑖 = . . . ◦ 𝑙𝑘+1︸    ︷︷    ︸

𝛼

◦𝑙𝑘 ◦ 𝑙𝑘−1 ◦ . . . ◦ 𝜖 and dn(𝑟 ) = 𝑙 𝑗 ◦ . . . ◦ 𝜖 . If 𝑗 ≤ 𝑘 , then

dn(𝑞1) ∈∗ dn(𝑟 ) ⇔ dn(𝑞2) ∈∗ dn(𝑟 ). If 𝑗 > 𝑘 + 1, then dn(𝑟 ) would be in the label graph and 𝛼 would exclude 𝑙𝑘+1 (𝛼 [0] ≠ 𝑙𝑘+1). If 𝑗 = 𝑘 + 1,
then it must be that 𝑙 𝑗 = ∗, in which case both 𝑞𝑖 match the wildcard for dn(𝑟 ).

The second and fourth components of Rank do not depend on the query value and are thus the same. The third components must also be
equal since dn(𝑞1) and dn(𝑞2) share the same prefix (except their last label) and dn(𝑟 ) cannot share a label in this last position with either
query since this would have caused 𝑞1 and 𝑞2 to be separated into different ECs.

Note that if a record 𝑟 is an exact match (dn(𝑟 ) = dn(𝑞𝑖 )), then it must be that 𝑞1 = 𝑞2, since otherwise the labels of 𝑟 would be in the label
graph, and thus 𝑞1 would not be placed in the same EC as 𝑞2.

Continuing, we then have a set 𝑅 such that:
𝑎1 = RRLookup(𝑅, 𝑞1, 𝑧)
𝑎2 = RRLookup(𝑅, 𝑞2, 𝑧)

We continue by case analysis on the execution of RRLookup for 𝑞1.

Case (dn(𝑅) = dn(𝑞1)). This is an exact match. As just stated, it must then be that 𝑞1 = 𝑞2. and so the equality trivially holds.

Case (dn(𝑞1) ∈∗ dn(𝑅)). In this case, the matching record(s) are wildcard records. From before, we know that dn(𝑞2) ∈∗ dn(𝑅). We therefore
get the following:

𝑎1 = WildcardMatch(𝑅, 𝑞1, {ty(𝑟 ) | 𝑟 ∈ 𝑅})
𝑎2 = WildcardMatch(𝑅,𝑞2, {ty(𝑟 ) | 𝑟 ∈ 𝑅})
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There are now three cases for how WildcardMatch can evaluate. We know that 𝑞1 and 𝑞2 have the same type by how the algorithm
generates ECs. If the types are equal:

𝑎1 = ⟨Ans, Syn(T (𝑅, ty(𝑞1)), dn(𝑞1))⟩
𝑎2 = ⟨Ans, Syn(T (𝑅, ty(𝑞2)), dn(𝑞2))⟩

Expanding the definition of Syn:

𝑎1 = ⟨Ans, T (𝑅, ty(𝑞1)) ∪ {⟨𝑑, 𝑡, IN, 𝜏, 𝑎, 1⟩ | ∃ 𝑑 ′, ⟨𝑑 ′, 𝑡, IN, 𝜏, 𝑎, 0⟩ ∈ T (𝑅, ty(𝑞1))}⟩
𝑎2 = ⟨Ans, T (𝑅, ty(𝑞2)) ∪ {⟨𝑑, 𝑡, IN, 𝜏, 𝑎, 1⟩ | ∃ 𝑑 ′, ⟨𝑑 ′, 𝑡, IN, 𝜏, 𝑎, 0⟩ ∈ T (𝑅, ty(𝑞2))}⟩

Since we must show that 𝑎1 ≈ 𝑎2, we compute:

real(𝑎1)
= ⟨Ans, real(T (𝑅, ty(𝑞1)) ∪ {⟨𝑞1, 𝑡, IN, 𝜏, 𝑎, 1⟩ | ∃ 𝑑 ′, ⟨𝑑 ′, 𝑡, IN, 𝜏, 𝑎, 0⟩ ∈ T (𝑅, ty(𝑞1)))⟩
= ⟨Ans, real(T (𝑅, ty(𝑞1)))⟩
= ⟨Ans, real(T (𝑅, ty(𝑞2)))⟩
= real(𝑎2)

In the second case, we have ty(𝑞1) ∉ 𝑇, CNAME ∈ 𝑇, 𝑅 = {𝑟 }. Again we assume the types are equal, so we have ty(𝑞1) ∉ 𝑇 and ty(𝑞1) = ty(𝑞2)
and it follows that ty(𝑞2) ∉ 𝑇 . Therefore, 𝑞2 will evaluate to the same case, giving us:

𝑎1 = ⟨AnsQ, Syn(𝑅, dn(𝑞1)), ⟨ans(𝑞1), ty(𝑞1)⟩⟩
𝑎2 = ⟨AnsQ, Syn(𝑅, dn(𝑞2)), ⟨ans(𝑞2), ty(𝑞2)⟩⟩

As before, we compute real:
real(𝑎1) = ⟨AnsQ, real(Syn(𝑅, dn(𝑞1)))⟩
real(𝑎2) = ⟨AnsQ, real(Syn(𝑅, dn(𝑞2)))⟩

And then
real(𝑎1) = ⟨AnsQ, real(𝑅)⟩
real(𝑎2) = ⟨AnsQ, real(𝑅)⟩

Which gives the desired result.

In the final case, forWildcardMatch we trivially have 𝑎1 = ⟨Ans, ∅⟩ = 𝑎2.

Case (dn(𝑅) < dn(𝑞1), DNAME ∈ 𝑇 ). In this case there is a single DNAME record (𝑅 = {𝑟 }). Given that 𝑞1 and 𝑞2 share the same prefix, it must
be the case that dn(𝑅) < dn(𝑞2) Therefore we get the same case for 𝑞2. We compute:

𝑎1 = Rewrite({𝑟 }, 𝑞1)
𝑎2 = Rewrite({𝑟 }, 𝑞2)

Expanding the definition of Rewrite:
𝑎1 = ⟨AnsQ, DProc(T ({𝑟 }, DNAME), 𝑞1)⟩
𝑎2 = ⟨AnsQ, DProc(T ({𝑟 }, DNAME), 𝑞2)⟩

Unfolding the definition of DProc, we get:

𝑎1 = ⟨AnsQ, ⟨{𝑟 } ∪ {⟨dn(𝑞1), CNAME, IN,ttl(𝑟 ), dn(𝑞1) [dn(𝑟 ) ↦→ ans(𝑟 )], 1⟩}, ⟨dn(𝑞1) [dn(𝑟 ) ↦→ ans(𝑟 )], ty(𝑞1)⟩⟩⟩
𝑎2 = ⟨AnsQ, ⟨{𝑟 } ∪ {⟨dn(𝑞2), CNAME, IN,ttl(𝑟 ), dn(𝑞2) [dn(𝑟 ) ↦→ ans(𝑟 )], 1⟩}, ⟨dn(𝑞2) [dn(𝑟 ) ↦→ ans(𝑟 )], ty(𝑞2)⟩⟩⟩

Applying the definition of real, we drop the synthesized records:

real(𝑎1) = ⟨AnsQ, real({𝑟 })⟩ = real(𝑎2)

Case (dn(𝑅) < dn(𝑞1), DNAME ∉ 𝑇, NS ∈ 𝑇, SOA ∉ 𝑇 ). As in the previous case, we know that dn(𝑅) < dn(𝑞2). It follows that 𝑞2 will also
match this case. We compute:

𝑎1 = Delegation(𝑅, 𝑧) = 𝑎2

Case (otherwise). This case is trivial, since 𝑞2 must also fall into this case since it matched the same conditions for all other cases. As such,
then we get 𝑎1 = ⟨Ans, ∅⟩ = 𝑎2.

Condition (𝑞′1 ∈ query(𝑎1), 𝑞′2 ∈ query(𝑎2) =⇒ 𝑞′1 ∼𝐶 𝑞′2): The final condition we must prove is for rewrites. There are two possible ways
a rewrite can happen: a DNAME or CNAME record. The proof follows the exact structure as in the previous condition, except we show only
these two cases since any other records with result in query(𝑎𝑖 ) = ∅.
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Case (dn(𝑅) = dn(𝑞1),Authoritative(𝑇 ), ty(𝑞1) ∉ 𝑇, CNAME ∈ 𝑇, 𝑅 = {𝑟 }). This is the ExactMatch case for a CNAME record. As before, we
observe that 𝑞1 = 𝑞2, so the property is trivially satisfied.

Case (dn(𝑞1) ∈∗ dn(𝑅), ty(𝑞1) ∉ 𝑇, CNAME ∈ 𝑇, 𝑅 = {𝑟 }). This is theWildcardMatch case for a CNAME record. As before, we observe that
dn(𝑞2) ∈∗ dn(𝑅), so 𝑞2 will execute in the same case. We have query(𝑎1) = {⟨ans(𝑟 ), ty(𝑞1)⟩} = {⟨ans(𝑟 ), ty(𝑞2)⟩} = query(𝑎2), so the
property holds since CNAME simply rewrites to a fixed new query.

Case (dn(𝑅) < dn(𝑞1), DNAME ∈ 𝑇 ). This is the Rewrite case for a DNAME record. As before, we observe that dn(𝑅) < dn(𝑞2), so 𝑞2 will
execute in the same case. Unfolding the definition of DProc, we have:

query(𝑎1) = {⟨dn(𝑞1) [dn(𝑟 ) ↦→ ans(𝑟 )], ty(𝑞1)⟩}
query(𝑎2) = {⟨dn(𝑞2) [dn(𝑟 ) ↦→ ans(𝑟 )], ty(𝑞2)⟩}

For this DNAME case, we know that dn(𝑞𝑖 ) (represented by path 𝜌) are prefixes of dn(𝑟 ). Suppose that 𝑞1 = . . . ◦ 𝑙𝑘︸  ︷︷  ︸
𝛼

◦𝑙𝑘−1 ◦ . . . ◦ 𝜖 and

𝑞2 = . . . ◦ 𝑙 ′
𝑘︸  ︷︷  ︸

𝛼

◦𝑙𝑘−1 ◦ . . . ◦ 𝜖 , and that dn(𝑟 ) = 𝑙 ′′
𝑗

◦ 𝑙 ′′
𝑗−1 ◦ . . . ◦ 𝜖 where 𝑗 < 𝑘 and 𝑙𝑖 = 𝑙 ′′

𝑖
. Further, suppose that ans(𝑟 ) is given by the target

domain name 𝜌 ′ The rewritten queries will be 𝑞′1 = . . . ◦ 𝑙𝑘 ◦ 𝑙𝑘−1 ◦ . . . ◦ 𝜌 ′ and 𝑞′2 = . . . ◦ 𝑙 ′
𝑘

◦ 𝑙𝑘−1 ◦ . . . ◦ 𝜌 ′. Since we always add the target
of a DNAME record to the label graph, path 𝜌 ′ will be a path that exists in the label graph. Moreover, there will be a dashed edge from the
node representing path dn(𝑟 ) to a node corresponding to 𝜌 ′. We will show that 𝑞′1 and 𝑞

′
2 now belong to the same label graph path. Since

𝑞1 and 𝑞2 could only have been in the same EC if 𝜌 ended in 𝛼 in the label graph, and since by construction this 𝛼 excluded all possible
subdomains for extensions of 𝜌 ′ after the rewrite, we know that the path matching 𝑞′1 and 𝑞

′
2 must end in 𝛼 . Since they match the same path,

we conclude that 𝑞′1 ∼𝐶 𝑞′2. □

Theorem 5.2 (Soundness). For all 𝐶 , 𝑞1, 𝑞2, and 𝑘 , if 𝑞1 ∼𝐶 𝑞2, then Resolve(𝑞1,𝐶, 𝑘) ≈ Resolve(𝑞2,𝐶, 𝑘).

Proof. From Resolve, we must show:⋃
𝑠∈Θ

Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘) ≈
⋃
𝑠∈Θ

Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑘)

In particular, we prove a stronger inductive invariant:

∀𝐶,𝑞1, 𝑞2, 𝑠, 𝑖 . 𝑞1 ∼𝐶 𝑞2 =⇒ Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) ≈ Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)
which then implies this equality. The proof proceeds by induction on the resolution step 𝑖 .

Base case (𝑖 = 0) trivial since we have
real(Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 0)) = real({ServFail, ∅}) = {ServFail, ∅}
real(Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 0)) = real({ServFail, ∅}) = {ServFail, ∅}

Inductive case (𝑖)We must prove that

Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) ≈ Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)
First, we observe that if 𝑠 = ⊥, then both the left and right hand sides evaluate to {ServFail, ∅} as in the base case.
There are now three cases for how Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) may evaluate. We consider each in turn:

Case 1 (ServerLookup(Γ(𝑠), 𝑞1) = ⟨AnsQ,
〈
𝑅, 𝑞′1

〉
⟩).

From the assumption of 𝑞1 ∼𝐶 𝑞2 we know that

ServerLookup(Γ(𝑠), 𝑞1) ≈ ServerLookup(Γ(𝑠), 𝑞2)
Substituting on the left, we get:

ServerLookup(Γ(𝑠), 𝑞2) ≈ ⟨AnsQ,
〈
𝑅, 𝑞′1

〉
⟩

Expanding the definition of ≈, we get
real(ServerLookup(Γ(𝑠), 𝑞2)) = real(⟨AnsQ,

〈
𝑅, 𝑞′1

〉
⟩)

Simplifying on the right:
real(ServerLookup(Γ(𝑠), 𝑞2)) = ⟨AnsQ, real(𝑅)⟩

This equality can only hold if: ServerLookup(Γ(𝑠), 𝑞2) = ⟨AnsQ,
〈
𝑅′, 𝑞′2

〉
⟩ and also real(𝑅′) = real(𝑅). We note that from the assumption

of 𝑞1 ∼𝐶 𝑞2, we know that 𝑞′1 ∼𝐶 𝑞′2. This also implies that N(Γ(𝑠), 𝑞′1) = N(Γ(𝑠), 𝑞′1)

There are now two cases. In the first case we haveN(Γ(𝑠), 𝑞′1) = ∅, which impliesN(Γ(𝑠), 𝑞′2) = ∅ from the assumption 𝐶 , and in the second
case we have N(Γ(𝑠), 𝑞′1) ≠ ∅ which implies N(Γ(𝑠), 𝑞′2) ≠ ∅. Both cases are proved the same way, so we show one (N(Γ(𝑠), 𝑞′1) = ∅).
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Since both cases will resolve using the AnsQ case, we can compute

Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) = Resolve(𝑞′1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1)
Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) = Resolve(𝑞′2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1)

therefore, we have:
real(Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)) = real(Resolve(𝑞′1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1))
real(Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)) = real(Resolve(𝑞′2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1))

From the inductive hypothesis, and the fact that 𝑞′1 ∼𝐶 𝑞′2, then we can conclude:

Resolve(𝑞′1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1) ≈ Resolve(𝑞′1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1)
and we can finally prove the desired result:

Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) ≈ Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)

Case 2 (ServerLookup(Γ(𝑠), 𝑞1) = ⟨Ref, 𝑅⟩)
From the assumption of 𝑞1 ∼𝐶 𝑞2 we know that

ServerLookup(Γ(𝑠), 𝑞1) ≈ ServerLookup(Γ(𝑠), 𝑞2)
Substituting on the left, we get:

ServerLookup(Γ(𝑠), 𝑞2) ≈ ⟨Ref, 𝑅⟩
Expanding the definition of ≈, we get

real(ServerLookup(Γ(𝑠), 𝑞2)) = real(⟨Ref, 𝑅⟩)
Simplifying on the right:

real(ServerLookup(Γ(𝑠), 𝑞2)) = ⟨Ref, real(𝑅)⟩
This equality can only hold if: ServerLookup(Γ(𝑠), 𝑞2) = ⟨Ref, 𝑅′⟩ and also real(𝑅′) = real(𝑅).

Since both cases will resolve using the Ref case, we can compute therefore, we have:

real(Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)) = real(⋃𝑟 ∈T (real(𝑅),NS) Resolve(Ω(ans(𝑟 )), 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1))
real(Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)) = real(⋃𝑟 ∈T (real(𝑅′),NS) Resolve(Ω(ans(𝑟 )), 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1))

from the definition of real, we can distribute over set union:
real(Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)) =

⋃
𝑟 ∈T (real(𝑅),NS) real(Resolve(Ω(ans(𝑟 )), 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1))

real(Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)) =
⋃

𝑟 ∈T (real(𝑅′),NS) real(Resolve(Ω(ans(𝑟 )), 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1)))
From the inductive hypothesis, and the fact that 𝑞1 ∼𝐶 𝑞2, then we can conclude that for each 𝑟 ∈ real(𝑅) = real(𝑅′):

Resolve(Ω(ans(𝑟 )), 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1) ≈ Resolve(Ω(ans(𝑟 )), 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖 − 1)
Since the components are pointwise equal, the set unions are also equal, so we obtain the desired result:

Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) ≈ Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)

Case 3 (otherwise)
The final case is immediate from the assumption of 𝑞1 ∼𝐶 𝑞2. In particular, this means:

{ServerLookup(Γ(𝑠), 𝑞1)} ≈ {ServerLookup(Γ(𝑠), 𝑞2)}
and since real is applied pointwise over sets:

ServerLookup(Γ(𝑠), 𝑞1) ≈ ServerLookup(Γ(𝑠), 𝑞2)
and by the definition of Resolve:

Resolve(𝑠, 𝑞1, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖) ≈ Resolve(𝑠, 𝑞2, ⟨𝑆,Θ, Γ,Ω⟩, 𝑖)
□

Theorem 5.3 (Completeness). For a configuration 𝐶 , each query 𝑞 belongs to at least one computed equivalence class.

Proof. The proof is straightforward: Assume we are given an arbitrary query 𝑞. We must prove that 𝑞 belongs to some equivalence class.
In particular, we simply pick the path through the label graph that shares the longest matching prefix with dn(𝑞). If the longest matching
path is an exact match, then we are done since we generate an EC for each type for that exact domain name dn(𝑞). If however, there is not
an exact match, the we select that last label in common with dn(𝑞), which will have an 𝛼 child. This child, by construction, will match any
domain name not already matched by a sibling or a child of some rewrite along the same path. □
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Theorem 5.4 (Linear time). In the absence of DNAME records, for a collection of zone files with 𝑛 resource records, our algorithm computes
𝑂 (𝑛) equivalence classes in 𝑂 (𝑛) time.

Proof. Without DNAME records, the label graph is a tree, and hence the number of paths in the tree is equal to the number of nodes in the
tree. The number of nodes in the tree is at most 127 * n, since each record can have at most 127 labels in it. Since we generate, at most, |𝑇 |
(constant number) equivalence classes for each path, there are at most O(n) ECs. To build the label graph, we add each of the 𝑛 records to the
tree. Since each domain name in a record can have at most 127 labels, adding the domain name to the tree involves walking through at most
127 levels of the tree to find where to add the new labels for the domain name. At each level, we find if there is a matching label by using a
hash table with amortized constant time lookup. So each insertion takes constant bounded time, and there are 𝑛 insertions. □
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