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ABSTRACT

RaHA is the first general tool that can analyze probable degra-
dation of traffic engineered networks under arbitrary failures
and traffic shifts to prevent outages. RAHA addresses a signif-
icant gap in prior work which consider only (1) < k failures;
(2) specific traffic engineering schemes; and (3) the maximum
impact of failures irrespective of the network design point.
Our insight is to formulate the problem in terms of heuris-
tic analysis, where one seeks to maximize the performance
gap between the network design point (i.e., the network with
no failures) and the network under failures. We invent tech-
niques that allow us to exploit the mechanisms within these
tools to encode the problem into components which can han-
dle them. We present extensive experiments on Microsoft’s
production network and those of Topology Zoo that demon-
strate RAHA is scalable and can effectively solve the problem.
We use RaHA to propose capacity augments that allow opera-
tors to mitigate potential problems and avoid future outages.
Our results show RaHA can find > 2X higher degradations
compared to those tools that only consider up to 2 failures.
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1 INTRODUCTION

Failures and unanticipated traffic shifts in wide-area net-
works (WANs) continue to cause outages [13, 21, 28, 31, 34]
because it is hard for operators to predict how much these
changes can degrade a network’s performance (compared to
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Relative Arbitrary Variable General

Approach

Impact  Failures Demands Objectives
TeaVaR [6] X v X X
QARC [38] X v v X
Yu [26] X X v X
Robust [9] X v v X
RaHA (ours) v v v v

Table 1: The capabilities and generality of RAHA com-
pared to prior worst-case TE analysis work.

what operators designed it for). It is hard to provision and
plan capacity in a WAN because operators must consider
how the large space of possible (and variable) traffic patterns
and failure scenarios jointly impact network performance.

Today, operators capacity plan [2, 12] (ensure there is
enough capacity to route peak traffic), traffic engineer [6, 27]
(route traffic subject to capacity constraints), and simulate
(test the WAN performs well against common changes [9,
26, 38]) their WAN to avoid outages. While each of these
techniques is effective in isolation, the WAN’s performance
can still degrade after a series of failures occurs concomitantly
with variable traffic.

For example, link failures caused significant downtime in
our production WAN in Africa. Like most cloud providers
we capacity plan our WAN so that it is resilient to up to
k failures [2, 6, 12, 26, 27], perform safety checks [31, 39],
and rely on resilient traffic engineering (TE) pipelines [22].
We also simulate the WAN traffic under different failure sce-
narios and augment capacity if failures impact the WAN’s
performance given the maximum traffic we expect it to carry.
But multiple consecutive natural disasters and changing de-
mands caused our network to become unable to carry the
traffic we expected it to and our simulator (which simulates
each possible failure combination under peek load) failed to
detect it in time.

Existing tools can not help avoid such incidents (Table 1).
This is because none can simultaneously account for (1) ar-
bitrary failure scenarios, (2) arbitrary changes in traffic de-
mands (e.g., shifts of up to 30% from average), (3) a wide
variety of traffic engineering formulations and objectives
such as total demand met, max-min fairness, or maximum
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link utilization (MLU), (4) any tunnel selection scheme, and
(5) the degradation in performance relative to what the net-
work design allows. The latter is particularly hard: if we
naively solve for the set of failures and demands that jointly
cause the worst objective (e.g., total demand routed) we often
find a scenario that is not practically relevant. For example,
one can trivially reduce the traffic the network routes to zero
if we set the demands to zero.

What operators care about is how the network performs
for the given traffic demands relative to the network without
failures — i.e., the gap in performance due to the failures.
Some of these aspects (e.g., the total demand met objective
and accounting for arbitrary changes in demand) conflict
with each other and are hard to jointly account for (see §4).

Prior work such as TeaVaR [6] and FFC [27] can model sce-
narios with limited number of failures (FFC puts a limit k on
the number of failures, TeaVaR prunes the failure scenarios
to reduce the combinations it models) but require a concrete
set of demands as input. More recent work can solve for both
failures and changes in demand, but only for specific aligned
objectives such as MLU [9, 38] or for networks with simple
path selection schemes such as shortest path routing [38].

RaHA! is the first general tool that allows operators to
simultaneously consider (1) all failure scenarios (and the
probability with which they happen), (2) the degradation in
network performance under variable traffic, (3) any tunnel
selection (e.g., oblivious routing [4] or k shortest path) and
commonly used traffic engineering scheme such as those
that optimize for max-min fairness [32] (Appendix A), total
demand met [15, 16] (§5), or those that minimize the MLU [9,
33, 38] (Appendix A), (4) how the traffic engineering solution
adapts to failures, and (5) augments to network capacity
to mitigate probable degradations. RAHA can model partial
failures — it can capture models when a portion of the LAG
capacity goes down — and shared risk groups (SRLGs). We
built RAHA to avoid incidents like the one above.

Operationally we use RaHA both offline to provision the
network (see §7) and online to raise alerts when it finds
failures can cause significant impact. RAHA produces two
types of alerts: (1) it alerts within 10 minutes if there exists
a probable failure scenario that would cause the network
performance to significantly degrade when it routes the peak
traffic between each node pair (based on past history); and,
if not, (2) it continues to check whether there exists any
demand? that can cause such a problem and alerts (within <
an hour) if so.

! Rana means free. We dedicate this work to all those around the world
who are far from home. We hope for a day where we all live in a world
where distance from family, friends, and “home" is a choice.

20perators can choose to run this step with additional constraints that
restrict the type of demands RaHA considers.
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RaHA solves a hard problem. To find if failures can cause
the network’s performance to degrade we need to simulta-
neously model and compare the performance of both the
designed network and the network under failure. We also
have to account for all possible failure scenarios and the net-
work’s reaction to each under all possible traffic patterns —
the search space grows exponentially with the number of
nodes, links, and fail-over policies.

The insight that allowed us to overcome these challenges
was to view the problem as a heuristic analysis one: where
we find the set of inputs (failures and demands) that maxi-
mize the gap between an optimal algorithm and an algorithm
(heuristic) that approximates that optimal. Here, this “op-
timal” is the network’s design point and the “heuristic” is
the network under failure. This view allows us to use ex-
isting tools such as MetaOpt [29, 30] to find whether there
exists a probable failure scenario that can impact the network:
the heuristic analyzer is able to navigate the large search
space and finds the failures and the demands that maximize
the reduction in the failed network’s ability to carry traffic
compared to it’s original design.

To use MetaOpt® we need to model the “heuristic” (the
network under failure) as either a convex or feasibility prob-
lem. While the optimal in most traffic engineering solutions
is already convex [6, 15, 16, 32]; this is not true of the failed
network. This network is hard to model as a convex problem
because we have to model (1) all possible link failure combi-
nations and their probability (which involve binary variables
and non-convex constraints); and (2) the network’s reaction
to them (which again involves non-convex constraints). To
solve this problem we exploit the bi-level structure of the op-
timization MetaOpt solves and “extract” the non-convexity
out of the heuristic model and move it to “outer” constraints
where MetaOpt can handle them. Our contributions are:

o We build RanA that models any number of link/LAG fail-
ures (and their probability), all possible traffic demands,
and many common TE solutions (see § 5 and Appen-
dix A). RaHA is open source [3].

o We use heuristic analysis tools to analyze the performance
degradation of networks by exploiting the inner mechanics
of these tools to extract non-convexities out of our heuris-
tic model and into constraints these tools can handle.

o We describe a novel approach to augment existing LAG ca-
pacities to remove all probable performance degradations.

o We evaluate RAHA on our production topology in Africa
and on topologies from Topology Zoo [20]. Overall we
conducted over 10,000 experiments. As part of these we
discuss how to estimate Link failure probabilities in prac-
tice §8 and lessons learned from running Rasa §9. Our

30ther SMT-based analyzers, are harder to apply and scale.
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results show that we find > 2x higher degradations com-
pared to prior works that consider up to k = 2 failures.

Ethics. This work does not raise any ethical issues.

2 MOTIVATION

The incident in our WAN shows why it is important to
quickly detect whether a network is vulnerable to upcoming
failures. A seismic event caused multiple fiber cuts, which
alongside changing demands, and a faulty line card caused
our WAN to become congested.

2.1 RaHA example

We show a highly simplified traffic engineering (TE) example
(Figure 1) to motivate why we need to jointly reason over
the network design point, the worst case failures, and traffic
changes. The network has four nodes (A, B, C, D) and routes
demands from B to D and C to D. We configure two paths for
each node pair. B can use paths BD and BAD while C can use
paths CD and CAD. We consider all single-link failures and
the TE maximizes the total demand the network carries. We
show three scenarios for the same network from left to right
with the worst case failure and the network design point (the
network with no failures) below it.

In the first scenario (left) we set the demands to fixed
values equal to “typical” demands from B to D (dgp) and C
to D (dcp). The network with no failures routes all 22 units,
whereas the worst case failure of the BD link causes it to
only route 15. This degrades the network performance by 7
units (the difference in what the two networks carry).

The middle scenario shows what happens if we allow
the demands to vary by up to 50% from the average (6 <
dgp < 18 and 5 < dcp < 15) — it shows if we naively
optimize for the demands and failures that produce the worst
case objective. The solution will find demands dgp = 6 and
dep = 5 and will fail link CD. The network routes only 10
units but this “poor performance” is really just because of
the choice of (small) demands and not because of the failures.
The network will route 11 units when all it’s links are up —
the network performance degrades only by 1 unit!

RaHA (right), which considers the full space of all possible
demands between each pair, finds demands dgp = 13 and
dcp = 12 and brings the AD link down. The failed network
can carry only 16 units whereas the network with no failures
carries 25 for a maximal performance degradation of 9 units.

2.2 Limitations of existing work

One may ask whether the tools the community has built such
as those for traffic engineering [6, 27] or verification [9, 26,
38] could solve this problem and could have prevented the
outage in our WAN. The answer is no (see Table 1). Tools [26,
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27] that only consider up to k-failures, where k is typically
< 2, would not prevent the incident.

Authors of these tools argue “probable” failures are those
where k is small. We show even when we target a moderate
availability of 99%, the maximum number of link failures
(we model edges as LAGs that consist of multiple links) that
can simultaneously occur within this probability constraint
can be as high as 15-20 (Figure 2). While such probable fail-
ures are rarely impacting (this is why incidents like the one
above don’t happen every day) there are situations where
they can degrate performance by > 30%.

Today, most operators aim to provide > 4-9’s availability
which means the number of link failures we need to consider
is even higher. A naive solution to this problem may be to re-
run TE solutions such as FFC [27] or TeaVaR [6] immediately
after the failure happens but, as incident above showed, this
can lead to a situation where there is not enough capacity
left for these solutions to solve the issue (and by the time this
happens we would have lost our lead time to react). RAHA
aims to complement these solutions and runs immediately
after each failure occurs to check whether there exists a
probable failure that can significantly impact our network.

Those works that consider any number of failures [9, 38]
focus on specific TE algorithms. For instance, QARC [38]
only models networks that route traffic over their shortest
path. Both QARC and [9] only model those TE solutions that
minimize the maximum link utilization (MLU). The MLU ob-
jective is “aligned” to this problem: to maximize the MLU the
optimization benefits from increasing the demands between
node pairs. This is not true of other objectives such as those
that maximize total flow — without any additional incen-
tives the optimization sets the demand to zero and produces
a trivial solution (Figure 1)!

This leads to a second, more fundamental limitation of
these works: none find the failure scenario that truly mat-
ters in practice — they focus on the failures and demands
that minimize the performance of the failed network but do
not consider how this failed network performs relative to
its design point. Most operators (including us) design their
network so that it is resilient to failure scenarios within a
demand envelope [2, 12] — chances are, the original network
also underperforms in the scenarios these tools find. These
are scenarios operators need to (and do) address in capac-
ity planning and where these tools provide value but alerts
based on them would cause too many false positives.

In contrast, Raha allows operators to analyze the failed
network: (1) under any demand with the option to narrow the
space to those that are of concern in practice (e.g.,, through
a slack parameter Figure 3); (2) under all failure scenarios;
and (3) relative to the healthy network.
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(b) Fixed demand (design point)

(d) Naive worst demand (design point)

(f) RanA demand (design point)

Figure 1: Examples that show why we need to jointly analyze the worst-case impact of both failure and traffic
demand changes. We show three cases: a fixed traffic matrix (a, b), naively finding the worst case failures and
demands (c,d), and RaHA’s solution in (e,f). All links are bidirectional with link capacities in black. Failed links are
red and we use dashed gray lines to indicate the demand the network routes on different paths.
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Figure 2: The x-axis shows failure probability thresh-
olds: we consider failures with at least this probability
(> threshold). The number of links that can simulta-
neously fail decreases as the threshold increases, since
higher thresholds exclude rare large-scale failures. Ex-
periments include different numbers of paths.

2.3 How RaHA helps

We use RaHaA to show the importance of accurate joint anal-
ysis in Figure 3. We find the scenario that minimizes the
network’s performance (i.e., similar to [9, 38] we do not con-
sider the degradation). We use a fixed demand and set it
to the average over a month-long period, progressively al-
low it to increase by up to some increment (the slack), and
each time search for the set of failures that minimize the net-
work’s performance. We then subtract this value from the
performance of that of the network’s design point with the
same demands but no failures. We compare the outcome to
what RaHA finds when it searches for both the demand and
the failure scenario and directly maximizes the degradation
within that demand range.

3 Raha
Max
2 Average

Degradation (normalized)

I I I I I I I
0 20 40 60 80 100 120 140

Slack (%)

Figure 3: We compare RAHA with naive baselines that
use the peak demand within the range to find the
worst-case failures for a given topology. The non-Rana
approaches minimize network performance (and not
the degradation). A degradation of 2 here means the
network drops traffic equivalent to 2x the average ca-
pacity of a LAG in the network.

These results reveal another subtlety about why the choice
of demands needs to depend on the network’s design point.
Intuitively one may think: "the goal is to route as much de-
mand as possible, if we set the demand for both networks
to it’s peak then that should also reveal the maximum per-
formance degradation (if we find the right set of failures)".
Clearly, this is not what we find. This is because of how our
network adapts to failures: each node-pair has a number of
backup paths available to it (1 in this experiment) which
it cannot use unless its primary path fails. This is why we
may not be able to degrade performance if we increase the
demand between certain node-pairs — it all depends on the
amount of capacity on the backup path between those nodes,
the LAGs they share with other primary path, etc.
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Figure 4: RAHA and its internals. It produces an exam-
ple demand and a set of failures that cause the worst-
case impact. RAHA can also produce where to add ca-
pacity and/or links in order to mitigate this impact.

3 RAHA OVERVIEW

Our insight is to use heuristic analysis tools to help us navi-
gate the large search space which includes all possible failure
combinations, demands, and the network’s reactions to each.

Figure 4 shows RAHA’s design. It takes as input: (1) the
network topology; (2) a set of paths (this is why Rana sup-
ports any path selection policy — it runs k shortest path if
this input is missing); (3) the link failure probabilities (this is
optional, without it we revert to < k failure analysis); and (4)
any constraints operators want to add (e.g., they may want
to only find scenarios that are likely to happen with prob-
ability > T). It then uses these inputs to model the healthy
network and the network under failure (and it’s reaction to
these failures) and feeds them into a heuristic analysis tool
which then produces an example demand matrix (operators
can also specify it) and a set of failures that cause the max-
imum impact given the constraints operators imposed. If
the impact goes beyond the operator’s tolerance levels, then
RAHA raises an alert to notify them.

RAHA can also find where operators should augment capac-
ity and mitigate probable scenarios that degrade performance.
RaHA supports any WAN that uses a single shot optimiza-
tion for traffic engineering (e.g., the geometric or equi-depth
binning WANSs in [32], MLU [9, 38], SWAN [15], or B4 [16]).
It also can support many different types of reactions to fail-
ures, whether local or global. Without loss of generality, in
this paper, we use our production WAN as an example of
how to model such problems and discuss how to extend this
formulation to a few other objectives in Appendix A.

4 BACKGROUND

We next provide the necessary background: (1) how MetaOpt
analyzes heuristics (see §4.1); and (2) how our WAN routes
traffic and reacts to failures (see §4.2).

4.1 How MetaOpt analyzes heuristics

We model RaHA with MetaOpt [29, 30]. MetaOpt solves the
heuristic analysis problem as a Stackelberg game. The game
involves an adversary leader who controls the input (I € 1)
to the optimal and heuristic algorithms and aims to maximize
the difference in performance between the two. The optimal
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and heuristic algorithms take the leader’s input and maxi-
mize their own respective objectives through other variables
they can control. We refer to the problem the leader solves
as the outer problem and the ones the heuristic and optimal
solve as the inner problems.

The game translates to a bi-level optimization:

Outer problem: max H(I) - H' (1) (1)
€

s.t.  Constraints(I)
Inner problem 1: H(I) = n}ax Optimal(Z, f°)

Inner problem 2: H'(I) = max Heuristic(I, fh),
f

where the optimal and the heuristic optimizations may
themselves contain additional constraints on f° and f". Op-
erators can add constraints on the types of inputs the outer
problem can choose from (Constraints(I)). For example, they
may restrict the space of inputs to ensure there are only
those that they expect to encounter in practice (refer to [30]
for more details).

In RAHA, the input variables 7 are network demands (how
much traffic each node wants to send to each other node) and
the set of failures. The variables f° and f" are the amount of
flow each of the two networks routes for each demand. The
formulation (by definition) ensures the solution is indeed
the failure scenario and the demand matrix that cause the
worst-case performance degradation.

The outer problem, the first inner problem, and their con-
straints need not be convex and can include binary and inte-
ger variables but the second inner problem has to be either a
convex optimization problem or a feasibility problem (i.e., a
satisfiability or SAT [10] problem). We exploit this to model
the network under failures in a way that MetaOpt can solve:
we use the fact that the variables of the outer problem (i.e.,
those we have highlighted in blue) are treated as constants
by the inner problems to “extract” out the non-convexity
into the outer problem where MetaOpt can handle them.

4.2 How our WAN operates

We next describe our WAN traffic engineering (TE) pipeline.
We only describe components which we need to model
in RAHA and omit details about our dataplane simulator, ca-
pacity planner, and safety checker due to space constraints.

The WAN of our large public cloud serves millions of
customers each day and routes multiple petabytes of traffic.
We use a centralized TE algorithm similar to SWAN [15] and
B4 [16] to route traffic. These algorithms take the topology
where each edge is a link aggregation group (LAG) comprised
of a bundle of physical links, a set of paths over these LAGs,
and a demand matrix, D, as input and find the optimal flow
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Variable Description

& The set of all the edges, or LAGs, in the network.

D The set of all demands.

dp The traffic volume source si has for destination #x.

P The set of paths available for the k** demand.

Phe The paths that go through LAG e for the k*” demand.

By The set of backup paths for the k*” demand.

Ce The capacity of LAG e.

Cle The capacity of link / of LAG e.

Ce The variable capacity of LAG e which is in {0, Ce }.

Ckp The path extension capacity variable for path pg.

Ukp Whether the path pg is down or not (binary variable).

Ue Whether LAG e is down or not (binary variable).

Ule Whether link / from LAG e is down or not (binary variable).
fr The total flow we route for demand k in the network.

frep The flow for demand k routed on path p.

fijk The flow for demand k on the edge between nodes i and j.
Ne The number of links that are part of LAG e.

Nip The number of edges/LAGs on path p for demand k.

Nkp The number of primary paths for demand k.

Dkj The j*"* path for demand k where the first nkp are primary.
e The probability that link  on LAG e is failed.

T Threshold on the failure probability scenario.

Table 2: Encoding variables. We highlight the vari-
ables that are constant values in red, and those that
are treated as variables for the outer problem but con-
stants for the inner problem in blue. Black values are
variables in both the inner and outer problem.

allocations on each path f, which routes the most traffic
without going over the capacity of any LAG:

max Z fi» st 2)
fi keD
0L fy <dy VkeOD

Demand constraints:

Flow constraints: fi= Z Jep VkeD
PEPr

Capacity constraints: Z
VkeD,pePre

fip £Ce Veed&

where %y is the set of paths available to demand k (see Ta-
ble 2 for notation). To adapt to changes to the demand or
topology we resolve this optimization periodically. This
model also describes the optimal we input into MetaOpt
as it models how the healthy network routes traffic.

The network reacts to failures through backup paths: paths
that we configure for each source-destination pair (demand)
and which the network fails-over to one after the other when
each primary path between the source-destination pair fails.
We next describe how we model the network under fail-
ure in MetaOpt and then describe how we move the non-
convexities involved into the outer problem.
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5 MODELING UNHEALTHY NETWORKS

We need to capture: (1) the change in capacity failures cause;
and (2) how the network adapts to them. To model both of
these aspects we need to control which links, LAGs, and
which paths can carry traffic. But we need to do so in a way
that preserves the convexity of the inner problem.

We use the model in Equation 2 and modify the capacity
constraints (which ensure the flow going through a LAG is
below its capacity). We introduce a new continuous variable
for each LAG in the outer problem, c., which is the variable
capacity of LAG e. We also add “path extension capacity
variables”, Ckp: artificial LAGs that we add to each path which
are also variables of the outer problem. These artificial LAGs
control whether traffic can flow through the paths — their
capacity constraints ensure the flow going through them and
the corresponding path, pi, does not exceed c.

The inner problem treats these new variables as constants
and therefore it remains convex. But we need to add con-
straints to the outer problem to ensure the inner problem
accurately models the unhealthy network — this is how we
extract the non-convexity into the outer problem.

The capacity of each regular LAG (in the original topology)
depends on which of its constituent links have failed:

Ce =Zc16 -(1-wy,) VYeed,
lee

where u, is binary (it is 1 when the link [ is down).

Setting the path extension capacity is harder. We need to
find: (1) when the path is down; (2) and when we are allowed
to use backup paths (we can only use the r* backup path if
r higher priority paths are down).

A path is down when a LAG is down and a LAG is down
when all of its links are down:

Ne-ue+aux:2ule 0<aux < N,—-1, Veed&, (3)
lee
Nkp~ukp22ue Vke D, pePp (4)
ecp

where N, is the number of links for LAG e and Equation 3
ensures a LAG goes down only when all of its links go down,
and Equation 4 ensures the path goes down when any of its
LAGs go down. The outer problem decides the values for the
variables in blue and they are constants in the inner problem.
The values in red are constants in both problems.

With uy,, to indicate if a path is down, we can set the path
extension capacities in a way only allows the " backup path
to become active when at least r other primary and higher
priority backup paths have failed. We create an ordered list
of paths where the first ny, are the primary path and the
remaining are an ordered list of backups, then:
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Ckpy = dic - L( Dty + 1y = 1)

0<i<j

Vk € D,p € Pr,j € {0..ngp +npp} (5)

where 7 (x) is an indicator function which we linearize
through standard optimization techniques [7]. Notice the
output of I is always 1 if j is one of the primary path (ny, —
j > 0) and for the r" backup path is 1 iff at least r higher
priority paths have failed (ny, — j = —r). We used ny;, and ny,
to indicate the total number of primary and backup paths.

5.1 How to constrain the problem

Often, we want to enforce other constraints on this problem.
For example, we run RaHA to consider all probable failures
(those that can happen with probability > some threshold).
We discuss example constraints but users can add others:

Only consider probable failures or scenarios. Users can
constrain RAHA to only consider probable scenarios (which
occur with probability > T). For instance, we can set T to
0.00001. This translates to:

1_[ e - (1 me) 74 > T
ecE,lee
where 7, is the probability that a link fails and is constant.
This formulation is non-convex. To turn it into a convex
problem we take the log of both sides (log is monotonic):

Z uje - logrm, + Z (1 =) - log(1 = mpe) 2 log T
ecE,lee ecE,lee
Notice how the above formulation automatically cap-
tures the entire space of failures and then ensures the opti-
mization only allows those that are above the probability
threshold — this is what allows us to go beyond k failure
analysis.

Only allow up to k failures. Similar to prior work [26]:

Z u <k

ecE,lee

Consider the worst case failure for a specific demand.
Operators can set the demands in Equation 2 (dx becomes
constant di). The healthy network’s inner optimization turns
into a constant and RAHA only outputs the failure scenario
that creates the maximum impact with the given demand.

Enforce a strongly connected network. This constraint is
one we occasionally use to analyze our production network:
we do not consider failures which cause all paths between a
source-destination pair to go down. We model it as:
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Z upp <|Pp| VkeD
pe?’k

Consider naive fail-overs. Our model assumes the network
optimally uses backup paths (the best case reaction). But
operators may choose to model a naive reaction where the
backup path is only a direct fail-over (or other variants). This
introduces additional constraints:

ﬁcpnkp+r < f,fpr Vk € D,Vr € {0..|B¢|}
ﬁcp Sf]fp Vke D, pePr\ By

where pp, ., is the rt" backup path for demand k and p,

is the r* primary path. The variable f° denotes the flow
assignment in the healthy network.

6 HOW TO SCALE

If the operator provides a fixed demand matrix to RaHA,
scaling is easy. This is because the solution to the optimal
problem (healthy network) effectively becomes a constant
value that RaHA solves independently. Maximizing the gap
between the optimal and heuristic (network with failures)
then translates to the problem of finding the failures that
maximize the gap between a constant and the heuristic en-
coding.

Raha can take longer (> 2 hours) if we use it to simulta-
neously find both the demand and the failure scenario on
a large topology. In our network, we use RAHA to analyze
each continent’s WAN network (see §9) and the network
that connects these continents together separately. We also
devise a clustering scheme to scale it further®. The cluster-
ing scheme finds a demand matrix that approximates the
demand that causes the worst case impact and then, given
this now constant demand, finds the failure scenario that
maximizes the impact overall (Algorithm 1).

To find this approximate demand matrix we first model
the problem on the full topology (line 1). Next, we divide
the topology into (disjoint) clusters (line 2). We then search
within and across clusters for local (to those clusters) demand
matrices that maximize the overall impact of failures in the
network (we still consider the full topology where the paths
of these demands can go across multiple clusters; and all
failures that can happen topology wide).

We go cluster by cluster and run MetaOpt to find local
demands (where both the source and destination fall within
the cluster) which cause the worst impact on the network
when failures happen. Here, we fix all other demands to the
value we found for them so far or zero if we have not yet
done so. We then repeat this step for those demands where
their source and destinations are in different clusters. We run

*MetaOpt [30] also has a clustering scheme for TE, we extend it here.



SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

Algorithm 1: Finding demands through clustering.

Input: Topology (T)
Input: Link failure probabilities (P)
Input: Paths (P)
Input: Operator specified constraints (C)
Output: Demand Matrix (D)
1 F « Model(T,P, P, C)
2 Clusters « GetClusters (T)
3 F « SetDemands (F, 0) //initialize to O
4 foreach C; € Clusters do

5 foreach C;j € Clustersdo
// Notice we can have C;=C(j.
6 foreachs € C;,d € Cj do
7 /I set dsq as unknown
8 F «— UnSetDemand (F, s, d)
9 end
10 z)cross_cluster «— Solve (F)
1 F « setDemands (F, Diross_cluster)
12 end
13 end

14 return GetDemands(F)

MetaOpt again on the full problem with this fixed demand
to find the failure scenario that causes the worst impact.

With this careful clustering we ensure we only approx-
imate the demand: when we analyze each cluster, we still
consider all failure scenarios, all paths (even those that exit
the cluster), and all other demands that we have set so far.
We further scale our approach with MetaOpt’s t imeout
feature which stops the solver if it has not made progress [30]
after the time we specify (in such cases, the solver usually
has found the optimal solution and uses the time to prove
this is the case). We evaluate both the clustering approach
and the impact of the timeout feature in §8.

7 HOW TO AUGMENT CAPACITY

Once RaHA finds the network is at risk operators may want
to augment the network’s capacity to eliminate that risk:
they can add more cables to LAGs to increase capacity, bring
back into service links that are down for maintenance, or
dynamically change an optical link’s capacity [38, 43]. RaHA
helps find where to add this capacity.

In RanA, we model two types of capacity augments: (1)
by adding capacity to existing LAGs and (2) by adding new
LAGs. Operators can choose which to use (or both).

We devise an iterative algorithm where we first run
MetaOpt to find if there exists a failure scenario with proba-
bility > T which would impact the network. If so, then we
solve for where to add capacity to most effectively mitigate
it’s impact, and then repeat this process until no such fail-
ures with probability > T remain. We find in many cases
this approach converges in just 2-3 iterations.
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To model augmentations (of either form) we define a vari-
able u, which specifies how many links we want to introduce
on a LAG (whether that LAG exists or not). We then set the
capacity of the LAG to C, + (ue)c (where c is the capacity of
a single link, and C, is zero if e did not exist in the original
topology). We then enforce that the network after it fails
should be able to carry at least the same amount of flow for
each demand as the healthy network.

It is straight-forward to solve the problem when operators
only want to augment existing LAGs [9, 38]: We just plug
in the new capacities in the formulation in Equation 2 and
modify the objective to minimize };, u,.

Operators usually also prefer this type of augment. This is
because to add a new LAG (edge) they often have to consider
the physical distance between nodes, whether it is possible to
add a physical cable between them because of the geograph-
ical terrain, what the impact of the LAG is on their ability
to manage the network (e.g., how it impacts the structure
of the topology), etc. RaHA allows operators to encode the
LAGs they consider viable and only considers those when it
finds augments that add a new LAG to the topology.

But we need a different formulation for when we want to
find where to add such new LAGs. This is because the set of
paths available to each demand change when we introduce a
new LAG and it is hard to account for that change as part of
a single optimization. We circumvent this problem through
the edge-formulation of the multi-commodity flow problem
but modify it to closely tie it to the path form (to find the
minimum sufficient augmentation). Due to space limitations
we show how to do this in Appendix C.

8 EVALUATION
We implement RAHA on top of MetaOpt [30].

Summary of results. RAHA can consider all possible fail-
ures and demands and find if there exists a probable fail-
ure scenario that can impact the network and the demand
that causes that impact in < 30 minutes’. For a fixed de-
mand, RaHA quickly (within 10 minutes) finds whether there
exists a probable failure that can impact the network.

RaHA can always find a probable failure scenario that
causes higher impact compared to what tools that only con-
sider up to k failures find (for k € {1, 2,3, 4}).

Our use of timeout does not impact the quality of the
results RaAHA produces. Even though we use clustering to ap-
proximate demands, RaHA finds scenarios that significantly
impact the network (in some cases the scenarios it find cause
the network to drop 30% of the traffic which the healthy
network would have carried).

5 Africa topology and on a laptop with 32GB RAM and 16 cores (Intel Ultra
7).
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We find the augmentation algorithm is effective — it aug-
ments the network so that there no longer exists a probable
failure that can impact it. We fully evaluate other aspects
of RaHA and our design choices next.

Due to lack of space we will also present an extended
evaluation in the appendix (Appendix D).

8.1 Setup, benchmarks, and metrics

Setup. We evaluate RAHA on our WAN in Africa: it has
~ 70 nodes and ~ 270 edges which expands to 76 nodes, 334
LAGs and 382 links when we modify it to reflect production
constraints (see §9). We also share results on topologies from
the topology Zoo with > 200 nodes and > 486 edges.

We consider link failures in all of our experiments (each
LAG has 1 to k links and k may be different for each LAG).
The number of failures refers the total number of failed links.
We do not have link information for the topologies from the
topology zoo and we use LAG failures in those experiments.

Most of our experiments use 2 clusters, T = 10748 primary,
and 1 backup paths (we use the k shortest path algorithm
and include the time to compute them in our run-times); and
a timeout set to 1000 seconds.

MetaOpt solves an optimization under a hood and requires
an optimization solver for its backend. We use Gurobi [14]
in our experiments.

How to estimate failure probabilities. We estimate the
probability a link goes down after it is repaired. We use the
renewal reward theory (see Appendix B) to compute these
probabilities from the data we collect from production [35]
(we know when a link goes down and when it is repaired).
We do not have failure probabilities about the LAGs in the
topology Zoo topologies. We instead set these probabilities
based on the data from our own production network.

Benchmark. We compare our solution to those which only
consider up to k failures can find and consider k € {1, 2,3,4}.
These are the only other works that can solve the same prob-
lem and also can model the TE pipeline we use in production.

Metric °. We measure the healthy network can carry but
that the failed network drops. To protect critical information
about our cloud, we normalize this metric by the average
capacity across all LAGs. We also present a limited set of
results for MLU: for these we show the actual degradation
but generate the demand from a gravity model with a scale
factor of 100 Gbps so that we do not leak information about
our network.

Connected enforced graphs. We show a number of exper-
iments where we only allow failures that do not cause all of

%We repeat each experiment multiple times and find the results and run-
times stable in most cases. Hence error bars are not visible in many cases.
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a demands’ path to go down. We refer to these scenarios as
“connected enforced” (CE). We use CE in production.

8.2 Probabilities matter!

Most prior work in this space ignore the probability with
which failures happen and only ensure the network is safe
when it is subject to < k failures. These works argue that
most probable failures are those where k is small (< 2) [26,
27]. We show this is not the case (Figure 5). As we can see,
whether we restrict the demand to fixed values (the way [27]
does) or not the worst-case degradation is much higher (at
least 2x higher) when we consider other failures that can
happen with the same probability but that involve a higher
number of link failures. We show how these numbers change
under CE constraints (Figure 6).

8.3 On demand variation

One of RaHA’s strengths compared to prior work is that it
can model variations in demand (Table 1). In Figure 5¢, we
showed results for when we allow any demand (from [0, co]).
In this section, we go deeper and analyze how the range
of demands an approach considers impacts degradations it
finds.

We design the following experiment: we allow RAHA to
consider variable demands but only allow it to choose de-
mands such that each demand falls in the interval [0, di],
where d. is a fixed upper bound on the demand k. We then
progressively increase di (by a percentage we call “slack”)
to see how this impact’s the outcome RAHA produces. We
show (Figure 7) RAHA can exploit this increase in range to
find scenarios that cause higher degradations.

8.4 On topologies

In addition to experiments on our production WAN, we also
conducted experiments on a few topologies from the topol-
ogy zoo. We show results for one small (B4) and one very
large (Cogentco) topology in Appendix D.2 but focus on a
medium size one in this section (Figure 8).

We use the Uninett2010 case to demonstrate why we need
to cluster the topology when the search space is large: we
see the solver fails to make enough progress in the time we
allot it when we reduce the probability threshold to 1074,

8.5 On runtime and what influences it

We next evaluate RaAHA’s ability to scale. For a fixed, given
demand, we find RanA always finishes within 2.68 + 0.35
minutes on our continental topology no matter what the
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Figure 7: RAHA can find higher and higher degradations
if it searches across a larger space of demands.

setting. We next show how RaHA scales and what influences
its ability to do so under variable demands.

On publicly available topologies. Under variable demands,
and arbitrary number of failures, RAHA easily scales to sup-
port topologies in the topology zoo: on the B4 topology (from

TEAVAR) it takes 25.01+0.00 minutes, and on the Uninet2010
topology it takes 28.86 +3.95 minutes without any clustering.

On our production network. We next look at the factors
that influence RaHA’s ability to scale (Figure 10 and Fig-
ure 14). In all of the scenarios we consider RAHA finds a
solution in < 50 minutes. The run time increases with the
number of primary paths: the number of variables we need
increases (and so does the time to compute paths). Most prac-
titioners use < 16 paths and we see that RAHA can solve this
scenario in less than 25 minutes. The runtime also increases
as we decrease the probability threshold we consider (as long
as it is greater than zero): the number of feasible solutions
increases and Gurobi [14] has to spend more time to prove
the solution it finds is optimal. RAHA’s runtime improves
if we remove the constraints on the probability of failures
it considers or those that restrict the maximum number of
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failures: this allows us to reduce the number of variables and
constraints.

On timeouts. Timeouts do not impact the quality of the
results RAHA produces no matter what constraints we run
it under (as long as we start with a reasonable timeout). We
ran RazA with timeouts between 500 — 4000 seconds and
found it finished within 100 minutes even with the highest
timeout setting (it finishes in 11.83 minutes’) when we use
a timeout of 500 seconds. The degradation it found did not
change irrespective of the timeout we used (see Figure 16).

On other objectives. We conduct limited experiments
where we changed RAHA’s objective to find the worst-case
MLU degradation. Without clustering, it finished in 15 min-
utes in all cases and found a degradation of 1.06, 1.32,1.26

"This time is the sum of the solver time (bounded by the timeout), the time
to encode the problem in Gurobi, and the path computation time.
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for 0, 10%, and 20% slack respectively. Degradation jumps to
3.12 when we set slack to 40%.

On clustering. Clustering is not always necessary and
we do not recommend it when operators want to use RAnA
offline. RaHA also does not require clustering to scale in
cases where we do not need to enforce a constraint on the
probability of the failure scenarios it considers or when we
do not consider traffic variations. But in the general case, for
large topologies, and when we run RanaA online (e.g., in our
use-case where we use it to analyze the network after each
failure) we need clustering. Clustering sacrifices optimality
but allows RaHA to find potential degradations more quickly.

We run an experiment where we set Gurobi’s timeout to
t once with no clusters and once with n (we divide ¢t by the
number of times we run Gurobi). We set ¢t = 7000s. We find
using 2 clusters does not impact results when we limit the
number of failures (Figure 9). When we analyze arbitrary
failure scenarios, RAHA sacrifices optimality for runtime: it
finishes 69% faster but sacrifices 15% degradation (Figure 9).

8.6 On capacity augments

So far we discussed one of the two usage modes for RAHA —
where it checks whether the network is at risk. Operators
can also use it to find how to augment capacity to mitigate
that risk. We evaluate this aspect next.

Operators can choose whether to add capacity to existing
LAGs or to check what new LAGs they can add to bring
the probable (we use T = 10™*) degradation to zero. We
find for fixed demands (maximum or average) RAHA can
find the sufficient capacity augment in 2 steps. We devote
this section to evaluate the more interesting case where we
augment the capacity so that the network is resilient under
arbitrary demands.

We need to assign a failure probability to the new capacity
we add (QARC [38] and [9], the only two work that model
augments, do not consider probabilities. We analyze that case
in Figure 17 and show RaHA easily handles it in 2 steps): we
use the average across the failure probability of other links
on the same LAG. Our results show RaHA can find capacity
augments that fully remove the network’s vulnerability to
all probable degradations in less than 6 steps (Figure 11).

9 PRACTICAL CONSIDERATIONS
We next describe practical aspects we considered for RAHA.

On continental analysis. We analyze the WAN in each of
our continents separately and then the network that con-
nects them. This helps scale and allows us to quickly find a
mitigation, isolate, and explain where the network degrades.
For example, in the incident that happened in our WAN, we
moved our first party services (and their traffic) out of the
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continent (where our network had degraded) to change the links in a LAG fail, some traffic flows to its backup path which
demand and reduce it to what we had capacity for. then impacts other paths that share capacity with it (this
also means demands that do not have paths that go over the
failed LAG may also get impacted by the LAG failure). RAHA
can help operators refine their path selection schemes and
identify paths that reduce the degradation their network may
experience in the face of failures.

On “equivalences". Certain sources and destinations are
sometimes “equivalent”. The case above is one such example:
this means demands that enter or exit the continent can
go to one of multiple “gateways” (multi-source or multi-
destination). Each of these gateways has a capacity for how

much traffic it can help transit. On runtime. We included the time to compute path in our
We add virtual nodes in the network to support this type runtime evaluations. In practice, we can compute paths of-
of analysis. These virtual nodes represent these gateways fline, once, and speed up RaHA further.

but have a crucial difference compared to other nodes in the
network: they have more path available to them — we allow
them access to all paths that their immediate neighbors have
access to. We enforce CE constraints on non-virtual nodes.

On probabilities. RanA does not always find scenarios that
fail more links if we reduce T. It may pick a different failure
scenario that involves fewer link failures but where some of
those links are less likely to fail — these are cases where it
On paths. A higher number of primary or backup paths can create higher degradation if it removes those links but it
does not always reduce the degradation we find. There are was not allowed to do so with the higher T.

multiple reasons for this. First, if operators do not select

edge-disjoint paths then RaHA can create larger degradations

when it picks links that participate in a larger number of

paths. Second, failures can have cascading effects — when all
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10 RELATED WORK

To the best of our knowledge, RaHA is the first tool that
can evaluate how a WANs performance degrades under ar-
bitrary failures and demands. RaHA applies to WANs with
any single-shot TE algorithm. Prior work has studied network
performance in the presence of failures before:

WAN performance verification. Prior work [9, 25, 26, 38,
41] verify WAN performance under failures — they validate
the traffic load properties and check whether there exist
scenarios that can cause network overload. But these works
cannot assess how the network performance degrades for
arbitrary TE objectives (see §2).

Yu [26] and Jingubang [25] assume routers use dis-
tributed routing protocols and do not apply to centralized
TE solutions that most cloud providers use [11, 15, 16, 23].
QARC [38] assumes traffic always follows the shortest path
available to it, whereas most TE algorithms [1, 15, 32] split
traffic over multiple paths. Pita [41] cannot scale to large
topologies — it enumerates all failure scenarios.

The closest approach to Raua, [9], which also uses bi-
level optimization cannot solve the problem exactly because
they cannot handle the non-convexity in the problem [30].
They instead try to find an upper bound on the maximum
link utilization which in practice means their approach may
cause too many false positives. Other work do not consider
performance metrics [17, 37, 40].

WAN capacity planning. Most cloud providers provision
their WANS to carry the typical demands they expect to
route between data centers and also ensure their WAN is
resilient to specific failure scenarios [2, 5, 12, 36, 44]. RAHA
complements these solutions and provides insights into the
demands and failure scenarios that may still impact their
final design and cause it’s performance to degrade.

Traffic engineering (TE). Operators use TE algorithms
with different objectives [1, 4, 6, 15, 16, 18, 19, 24, 27, 32, 43].
Some of these algorithms (e.g., [4, 6, 8, 18, 19, 27, 42, 43])
employ failure recovery mechanisms or optimize for failure
resilience to minimize the impact of failures on the demands
they route. But, as we saw in the incident that happened
in our production network (§2), there is a point where the
network no longer has sufficient capacity available for these
algorithms to use and these solutions can no longer mitigate
the issue. RaHA identifies whether such cases are likely to
happen and alerts operators to mitigate the issue before they

do.

11 CONCLUSION

We introduced RaHA the first tool that can model and ana-
lyze the worst-case degradation of a WAN’s performance (i.e.,
the difference in performance between the healthy network
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and the same network with failures) under arbitrary prob-
abilistic failures, variable traffic, and many TE objectives.
Our evaluation shows today’s solutions often underestimate
the severity of performance degradation because they solely
focus on the worst-case performance of the network with
failures. RaHA models a WAN’s performance degradation as
a bi-level optimization through the lens of existing heuristic
performance analyzers like MetaOpt. We carefully extract
non-convexities into the outer problem so that RAHA can
model a wide-variety of TE objectives and retain support
from existing off-the-shelf optimization solvers. We showed
how Rana allows operators to find vulnerabilities in their
networks, quantify their impact, and augment capacity to
mitigate them.
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A MODELING OTHER TE ALGORITHMS

In this section we show how to extend the model we intro-
duced for our production traffic engineering pipeline to other
TE pipelines with different objectives.

Single-shot max-min fairness [32]. RAHA can support
any traffic engineering solution that we can formulate as
a convex optimization problem. The single-shot max-min
fair solution from Soroush [32] (namely their Geometric or
Equi-depth binner algorithms) are one such approach where
it is very straight forward to use RaHA: all we need to do is to
use the optimization they introduce for these algorithms and
replace the constant capacity with a variable one where we
model the network under failure (similar to our approach in
§5). We still need to add the constraints in the outer problem
that sets the values for these capacity variables.

Modeling MLU (minimizing maximum link utiliza-
tion). Once again, this is an easy extension of RaHA. To
model MLU we need to replace the total demand met objec-
tive in both the healthy and the failed network models with
a variable —U (because lower MLU is better we need to solve
a minimization problem) and enforce in each optimization:

UCe2 Y fy Vee&.
pleep

MLU optimizations do not model capacity constraints —
we need to rely on path extension capacities to ensure when
a LAG goes down the flow on that LAG also goes down (we
only enforce capacity constraints on these LAGs) and we
need to add a constraint that enforces Cy;, < ug,.

Note, the inner problem considers the variable Cy, as a
constant which means the problem is still convex and we
can apply KKT and primal-dual techniques to convert the
problem into a single-shot one. We still need to linearize the
multiplication. We achieve this through the helper functions
MetaOpt provides.

Another important requirement when we model MLU is
to use CE constraints: MLU models become infeasible when
two nodes become fully disconnected (these formulation
require the network carry the full demand but there are no
path for the traffic to use).

B USING RENEWAL REWARD THEORY

We use the renewal reward theorem [35] to compute the
probability with which a link is down (we can use the same
process to compute the probability of a link going down).
The renewal reward theorem considers a renewal process
in time where time is split into intervals of X; duration. These
X; are independent and identically distributed. For each in-
terval we define a reward function R; where these R; are also

Arzani et al.

independent and identically distributed. The theorem then
ensures

E(R) _ .. R()
—— = lim —,
E(X) t-e ¢t

where R(t) is the reward we accumulate up to time t.

To compute the probability with which a link goes down
after it is repaired, we define the X; as the time between each
repair of the link and R; as the duration in which the link is
down within Xj. If consecutive link failures are independent
then so are R; and X;.

C AUGMENTS WITH NEW LINKS

We need to modify our formulation if we want to consider
where to add new capacity into our network (where a LAG
previously did not exist). This is because each new LAG
changes the set of paths that are available between each
source-destination pair. We use the edge-formulation of the
multi-commodity flow problem to address this.

The primary difference between the edge form and path
form (Equation 2) are the flow conservation constraints (what
comes into a node goes out):

D Sk hdli=1h) =
jli.j)eé
Z fik+fil(i=sy) VieNkeD, (6)
jlGies
where s; and t; are the source and destination for demand
k respectively and f{; j x) is demand k’s flow on LAG (i, j).
In the edge form we define the flow variables per edge
(LAG) instead of per path. The only restriction on where
traffic can flow comes from the flow conservation constraints
and capacity constraints: this is why the edge form can route
more flow — it has all possible paths between each source-
destination available to it. This means the solution we find
with the edge form is an upper bound on what our network
would be able to route. We apply techniques to tighten this
bound so that we only add capacity if/when it is needed:
First, for each demand, k, we only define the values f{; ; r)
on those paths that existed before the failure happened and
for new LAGs which didn’t exist in the original topology.
Second, we weigh capacity augments to prefer those which
will likely be part of a demand’s path: for example, if the
network uses the k-shortest path, we prioritize LAGs based
on their minimum distance to the source-destination pairs
whose demand was impacted by the failures MetaOpt found.
Finally, we progressively increase the demand we consider
in the augment step if we find the edge form can match the
performance of the healthy network despite the link failures
while RanA indicates the path-form cannot (through this step
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Figure 12: (a) and (b) show how the number of primary paths available changes the degradation we can find;
(c) shows the same as we vary the number of backup paths. Surprisingly, in some examples, we increase the
degradation if we increase the number of available primary paths: this is because in our experiments we compute
paths through the k shortest paths algorithm and the paths we find often share LAGs — the algorithm exploits the
increase in shared failure modes to increase the degradation.

we match the demand to the degree which the edge-form
makes additional paths available).

D EXTENDED EVALUATION

We continue our evaluation in this section due to lack of
space in the main body of the paper.

D.1 Paths and degradation.

We next investigate how path selection influences the degra-
dation in performance the network can experience (Fig-
ure 12). Perhaps surprisingly, we see the degradation does not
always decrease as we increase the number of paths. This is
because of our path selection algorithm which picks the top
k shortest paths: many of these paths may share common
edges (LAGs) and as we increase the number of paths the
possibility of their fate-sharing increases — we can bring
down more paths through the failure of all links in a single
LAG.

We investigate this further and repeat the experiment in
Figure 12b but with paths which we select differently (we
apply weights to LAGs to change which paths we select).
The results show there is a point after which the degradation
decreases as we add more path (Figure 13).

We also show results where we look at the fixed, max-
imum demand instead. Here the number of path matters
less, since RAHA cannot manipulate the demands to take
advantage of “shared” failure modes.

D.2 More on topology zoo

We show more results on the B4 topology from the topology
z0o. We constrain the demands to be below half the average
LAG capacity to ensure a single demand does not create a
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Figure 13: Impact of our path selection scheme on our
earlier results. We see there is a point after which more
paths helps reduce the degradation RaHA can find.
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Figure 14: We evaluate the ability to scale as we increase
the number of backup path (remember we include path
computation in this runtime). RaAHA finishes in under
50 minutes in all cases. If we exclude the path com-
putation time the computation finishes even sooner:
33.33 + 0.14 when we have 4 backup paths.

bottleneck. Because we do not have probability estimates nor
link information for these topologies we assumed each LAG
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Figure 15: We repeat the experiments in Figure 12 but we fix the demands to the maximum traffic we observe
between each pair in a month-long duration. We see here the degradation does not depend on the number of paths

because RaHA cannot manipulate the demand.

T  #backup max failures Degradation T #backup max failures Degradation

1071 1 € {1,2 4,00} 1 e {1071,107%} 1 1 1

107! 2 € {1,2,4, 00} 1 € {1071,107%} 1 2 2

1072 €{1,2} 1 1 € {107',107%} 1 4 4

1072 € {1,2} 2 2 107! 1 ) 6

1072 € {1,2} € {4, 0} 3 1072 1 co 10.5
107 e{12} 1 1 Table 4: Results on the Cogentco topology with 197
107 e{12} 2 2 nodes and 486 edges. We use 4 primary paths, 1 backup
107 e{1,2} € {4,00} 4 path, and 8 clusters. We normalize the performance

Table 3: Results on the B4 topology. All the experi-
ments hit the 25-minute timeout we used and finished
within 25 minutes. The performance degradation is
normalized by average LAG capacity (=5000).

only consists of a single link and assigned the link failure
probabilities randomly and based on values from our produc-
tion network. We see that without clustering, RAHA always
hits the 25-minute timeout we used in this case (Table 3).
We also run experiments on a large topology (CogentCo).
This topology has 197 nodes and 486 edges. We use 4 main
paths and 1 backup. To scale, we use 8 clusters. Our results Ta-
ble 4 show RAHA can find a higher degradation compared to
other tools, which focus on a limited number of failures.

D.3 More on scale!

Impact of the number of backup paths. We show the im-
pact of the number of backup path on our runtime (remember
we include the path computation as part of our runtime) in
Figure 14. The runtime increases as we increase the number
of backup paths but we find the big reason for this is the path
computation itself: RAHA finishes in 33.3 + 0.14 minutes with

degradation by average LAG capacity (=1000).

4 backup paths when we input the paths instead of having it
compute them.

Impact of timeout. We discussed the impact of timeouts
on scale in § 8. We show the detailed results here for the
interested reader. We see the timeout does not influence the
quality of the degradation we find (Figure 16b).

The type of path we use impact’s scale. In our experi-
ments we used the k shortest path where we use the number
of paths as the weight of each LAG. For variable demands
our runtime remains within 25 minutes on our continental
topology (22.39 + 8.39 minutes).

D.4 More on capacity augments

Capacity augments on existing LAGs. We showed Rana
goes beyond existing works when it augments LAG capac-
ities and is able to consider the probability of these new
capacities failing as part of its analysis. Here we also eval-
uate it in the scenario which prior work also consider: one
where it augments the capacity of existing LAGs and assumes
this new capacity cannot fail.
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Figure 16: Timeouts do not impact degradation we find but do impact the runtime of RaHaA.
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Figure 17: RAHA can augment LAGs until probable failures can no longer degrade performance. We show the
number of iterations RAHA needs to achieve this (a); the average reduction in the normalized degradation across
these steps (b); and the total number of links it adds (c). Unlike in Figure 11 where we allowed this augmented

capacity to also fail, here we assume they cannot. Here the failure probability threshold we enforce is 107%.
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Figure 18: RaHA can add new LAGs (edges) to the topology until probable failures can no longer degrade perfor-
mance. We evaluate this behavior here where we assign the probability of these failures to zero.

to manage the network (e.g., does it break the symmetry they
had baked into the topology design?). Once they identify the

set of edges they consider feasible to add they can use Rana
to find which (smallest) subset would reduce the degradation

to zero (Figure 18).

Adding new capacity. Operators may want to consider
where to add new edges. To do so, they first need to identify
where it is possible to add such edges (LAGs): does the terrain
allow it? What is the cost? What is the impact on their ability
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