
Rethinking Machine Learning Collective
CommunicationasaMulti-CommodityFlowProblem

Behnaz Arzani*
Microsoft Research

bearzani@microsoft.com

Siva Kesava Reddy Kakarla*

Microsoft Research
sivakakarla@microsoft.com

Miguel Castro
Microsoft

mcastro@microsoft.com

Srikanth Kandula
Microsoft Research

Srikanth@microsoft.com

Saeed Maleki
Microsoft Research

saemal@microsoft.com

Luke Marshall
Microsoft Research

luke.marshall@microsoft.com

Abstract
We show communication schedulers’ recent work proposed
for ML collectives does not scale to the increasing problem
sizes that arise from training larger models. These works also
often produce suboptimal schedules. We make a connection
with similar problems in traffic engineering and propose a
new method, TE-CCL, that finds better quality schedules
(e.g., finishes collectives faster and/or while sending fewer
bytes) and does so more quickly on larger topologies. We
present results on many different GPU topologies that show
substantial improvement over the state-of-the-art.

1 Introduction
Near-optimal collective communication optimizers [5, 27,
29] — that optimize the communication routes and schedules
of distributed training — cannot scale to what cloud opera-
tors need. This is because cloud operators run large multi-
tenant GPU clusters where they schedule distributed training
jobs over many GPUs. Tools that find optimum topologies,
hardware architectures, or co-optimize various aspects of dis-
tributed training [19, 30, 31] also rely on these optimizers and
call them multiple times during their search.

Without communication optimizers GPU clusters spend
a significant amount of time with idle GPUs: prior work re-
ports the GPUs in BERT [8] and DeepLight [7] spent 11% and
63% of the time idle respectively [27]. The problem becomes
worse as we move to faster GPUs. Current communication
optimizers leave significant room for improvement: for exam-
ple, we show we can improve upon state-of-the-art solutions
such as TACCL [27] by over 2× on its two chassis NDv2
topology [2] (Figure 11).

We scale near-optimal collective communication optimiz-
ers (e.g., SCCL [5]) — that model the problem imperfectly
but optimally solve their model — to enable cloud operators
to use them for today’s large GPU collectives and improve
their runtime to make them more usable as part of other
collective optimizers such as [19, 30, 31] — our goal is to

*both authors contributed equally to the paper

improve the solution quality of state-of-the-art heuristics (e.g.,
TACCL [27]) while maintaining the same ability to scale.

The input to a collective communication optimizer is a
demand (e.g., ALLTOALL, ALLGATHER, ALLREDUCE): a
set of interconnected GPUs where each GPU has a certain
amount of data to send to other GPUs in the interconnect. The
goal of the optimizer is to produce routes and schedules that
either maximize bandwidth utilization [29] or minimize job
completion time [5, 27] for the input demand or both.

Near-optimal optimizers (e.g., [5]) apply to a single chas-
sis [5]. In contrast, operators require solutions that scale
to topologies with 30-60 chassis (and project larger topolo-
gies) [6]. Heuristic scale but often produce highly sub-optimal
solutions [27, 29]. This is becoming a problem as topologies
grow and more users share the same underlying network.

SCCL cannot scale because it uses SMT solvers [28]. The
heuristics avoid using SMT solvers and scale better but fail to
account for one or more factors (e.g., identifying where traffic
should be copied inside the network, enforcing synchroniza-
tion barriers, and properly accounting for latency of transfers)
and produce sub-optimal solutions as a result.

We propose an alternate solution: TE-CCL. Our insight is
that we can model the problem of collective communication
optimization through techniques from a class of problems
known as multi-commodity flow.

Operators use multi-commodity flow problems in traffic
engineering (TE) and use flow conservation constraints to
model the flow of traffic — they assign paths to maximize a
cost function [3]. They, too, take a set of demands as input and
produce routes and schedules that optimize various objectives.
But the collective problem has nuances that are not present in
a traditional multi-commodity flow model:
Temporal variations. Multi-commodity flow problems as-
sume “sustained demand”: such problems rely on a continu-
ous flow of data between a source and destination (for several
minutes), and this is why the demand in these problems is a
bandwidth request (with units such as bits/sec). But GPUs
in a collective have finite data to send – the demand in these
problems is a transfer request (with units such as bits).

1

ar
X

iv
:2

30
5.

13
47

9v
1

 [
cs

.N
I]

 2
2

M
ay

 2
02

3

This means we can no longer minimize the delay on the
longest path to minimize the transfer time as traditional flow
problems do: we can no longer assume an uninterrupted flow
of traffic to approximate the delay cost of transfers (see § 2).
Support for store and forward. Traditional flow prob-
lems [3] do not model caches. We show in § 6 that we can
speed up the solver to find schedules faster if we use the
available memory in GPUs.
Supporting copy. Unlike typical use-cases of the network
flow formulation (e.g., in the TE context [14, 16]), collective
communication often multicasts the same data to multiple
parties, which requires the model to appropriately copy data
within the network (and adjust the traditional flow conserva-
tion constraints accordingly).

Some prior works do extend multi-commodity flow prob-
lems to incorporate these concerns: e.g., Calendaring [17] sup-
ports deadlines on fixed-size transfers, NetStitcher [18] allows
for store-and-forward, and several multicast TE works [10,
22] support copying (see § 7). But, it is non-trivial to com-
bine these techniques to add support for all three dimensions
simultaneously without affecting scalability.

We adapt multi-commodity flow problems to model all
three behaviors and solve the general collective communica-
tion optimization problem. Our solution is a scalable mixed-
integer linear program with optimality gap guarantees (based
on the primal-dual theorem [3]). We show that this solution
scales to much larger collectives than techniques such as
TACCL [27] and SCCL [5] and improves the solution quality.

For certain collectives we can scale this solution even fur-
ther by converting the MILP into an LP by removing all
integer variables. In the general case, we improve scalability
by partitioning the problem in time — a technique inspired
by the 𝐴∗ [12] from robotics.

TE-CCL’s solutions match the solution quality of SCCL
and outperform the quality of state-of-the-art solutions such
as TACCL [27] — we show a minimum of 2× performance
improvement on the same 2 chassis NDv2 topology TACCL
uses — and shortest path schedules [31] because the optimiza-
tion models the end-to-end problem (whereas these works
contain consecutive optimizations that only see a partial view
of the problem at each stage), and adds support for copy and
store-and-forward. As part of TE-CCL we are also able to ac-
count for multi-tenant, heterogeneous topologies where links
have different latency, and bandwidth costs and tenants have
different priorities to support cloud-scale GPU clusters better.

Our contributions are as follows:
• We present a novel, scalable, solution to the collective

communication optimization problem. To the best of
our knowledge, this is the first multi-commodity based
solution to this problem. This new mode of thinking
provides an opportunity to improve other aspects of

machine learning collectives such as topology design
and adapting to failures.
• We show how to scale this solution to larger topologies

through a linear program for ALLTOALL-like demands
and a technique inspired by 𝐴∗ in the general case.
• We evaluate TE-CCL both on popular topologies and

on the proprietary, large-scale topologies from a large
public cloud. We show our solution improves the so-
lution quality of TACCL [27] by a minimum of 2× in
many scenarios. We find TACCL’s heuristic is unre-
liable (produces different solutions in each run) and
cannot find a feasible solution in many cases. In con-
trast, TE-CCL is reliable, produces the same solution
in each run, and finds a feasible solution in instances
where TACCL was infeasible. TE-CCL and TE-CCL
have similar abilities to scale although TE-CCL was
able to run on much larger topologies.

2 Background and Motivation
We present the necessary background on collective commu-
nication and motivate the need for scalable communication
schedules for ML collectives. We then describe the multi-
commodity flow formulation, how it relates to collective com-
munication optimization, and show why we should modify
them to model delay, store-and-forward, and copy.

2.1 The need for fast collective scheduling
ML collectives have pronounced communication patterns
with flavors of multicast aggregation trees: e.g., ALLGATHER,
ALLTOALL, SCATTERGATHER (Figure 2 in TACCL [27]
illustrates these communication patterns and how they differ).

These communication patterns constitute a demand on the
network where each GPU wants to send data to other GPUs.
For example, in an ALLGATHER demand, each source GPU
intends to send all of its data to all other GPUs, and in an
ALLTOALL demand, each GPU wants to send data to all other
GPUs, but the data it sends to each GPU is different.

Collective communication optimizers take these demands
as input and find solutions that route and schedule them effi-
ciently to minimize transfer time. Operators use these optimiz-
ers in their multi-tenant GPU clusters and as part of solutions
that help improve their offerings [19, 30, 31].

Most optimizers use the 𝛼 − 𝛽 cost model [13]. 𝛽 is the
transmission time of bytes on a link (how long it takes for
the NIC to get the bytes on the wire): if we send B bytes on
a link with capacity 𝐶 bytes per second, it takes B

𝐶
seconds

for the bytes to cross that link and 𝛽 = 1
𝐶

. 𝛼 is the constant
delay of a link. In its simplest form, we can think of it as the
propagation delay over a link, but it can also include other
factors such as the fixed compute cost of consolidating the
data and making the call to the network stack to transmit it. It
takes 𝛼 + 𝛽𝑆 seconds to send a chunk of size 𝑆 over a link.

2

Most existing optimizers fail to scale to large topologies
(e.g., SCCL [5]) or produce sub-optimal schedules (e.g.,
NCCL [5, 31], TACCL [27]). SCCL uses SMT solvers and
does not scale. TACCL separates the routing and scheduling
problems and fails to co-optimize the two. The shortest path
first algorithm in [31] fails to leverage copy.

2.2 Background on network flow solutions

Many works find optimal routes for wide area traffic engineer-
ing (WAN-TE) and for multicast networks (e.g., [1, 9, 10, 14,
16–18, 21, 22]). These problems also take as input a set of
demands: “rate requests” between a source-destination pair.
The solutions aim to meet these demands and maximize the
total flow the network carries, or the network utilization, or
maintain fairness without violating capacity constraints.

Although these formulations take different forms (most
notable of these is the path-formulation which takes a set
of paths as input and only allows flows to go over the input
paths [14, 16]) they share the following key components:
Capacity constraints. Ensure that the traffic the solution
allocates on a link never exceeds its capacity.
Flow conservation constraints. Ensure that the solution does
not create traffic “out of thin air” but that each non-source
node forwards what it receives or consumes it.
An objective. The objective encodes what the optimization
is trying to minimize or maximize: the cost model. The most
common TE objectives include max-min fair rate allocations,
total satisfied demand, or the link utilization.

We observe that the multi-commodity flow and the collec-
tive communication optimization problems have many com-
monalities: both take a set of demands and a topology as input
and produce routes (and schedules) to optimize an objective.

But the two are different as the collective optimizer re-
quires we account for: copy, store-and-forward, and temporal
behavior (and the impact on the latency cost as a result). We
next discuss each of these in detail:
Temporal behavior. In the collective problem, the source
wants to transfer a fixed number of bits — once the network
satisfies the demand from that source, the demand goes to
zero and frees up capacity. The network can then re-assign
this capacity to other demands. This happens in the traditional
TE as well but at larger time-scales and most deployed TE
solvers periodically re-solve the optimization to handle it.
This is not a problem at face-value — after all we solve the
problem offline — but it impacts the scalability of the solution
in the collective setting. Calendaring [17] and Netstitcher [18]
both model this, but they do not model propagation delay and
hence fail to address an important side-effect:
Modeling delay (the 𝛼-cost). Most TE solutions (e.g., [10, 22])
compute the delay-cost as the maximum delay across all paths
where the delay of a path is the sum of the delay on each of its

links. These models assume the total time needed to fulfill a
demand is the transmission delay (or 𝛽-cost) + this delay-cost.

We show why this model breaks through an example (Fig-
ure 1a). Here, two sources (𝑠1 and 𝑠2) want to send a unit of
traffic (and) to destination 𝑑 . The links on the path from
𝑠1 to ℎ3 have a propagation delay 𝛼1 and those on 𝑠2 to ℎ3
have a propagation delay of 𝛼2 where 𝛼2 = 2𝛽 + 3𝛼1. If we
take the traditional TE approach to model the delay, the path
with the maximum delay is the one between 𝑆2 and 𝑑 which
has a propagation delay of 𝛼2. It also takes an additional 4𝛽
for the traffic to get from both 𝑆1 and 𝑆2 to 𝑑: the TE solutions
estimate 𝛼2 + 4𝛽 as the completion time.

But because of the higher propagation delay on the link
𝑠2-ℎ3 the data from 𝑠1 and 𝑠2 both arrive at ℎ3 at the same time
(𝑡 = 𝛽 + 𝛼2), since the propagation delay on the link ℎ3-𝑑 is
zero, the total time to complete the transfer is 𝛼2 + 3𝛽.

The impact of 𝛼 is greater for smaller transfers (Figure 2):
the error in our estimate of algorithm bandwidth for a schedule
where we do not model 𝛼 to one where we do goes up to 100×.
Store-and-forward. Most nodes in a collective topology can
buffer incoming traffic before sending it out. We can use this
to improve solver time (Figure 1b) as the number (space)
of optimal solutions increases. In Figure 1b, without store
and forward, in the first second, any two nodes (3 schedules)
can send their chunks to ℎ. With store and forward, we can
have three additional schedules where all three sources send
to ℎ in the first second, and we then choose in which order
to send them to the destination in the next. The solution
quality is the same in both cases (we satisfy the demand in
3s). WE confirmed this in our experiments in § 6.3 across all
the scenarios we considered. For some collective demands
store-and-forward may also help with transfer time (though it
did not in our experiments).

But traditional TE does not model buffering [14, 16]. Net-
Stitcher [18] models store and forward but assumes flows do
not compete for bandwidth and solves a separate optimization
for each flow: it is sub-optimal and does not scale. Some
multi-cast TE solutions model intermediate caches [10], but
they fail to account for the delay, and it is difficult to modify
them to do so.
Copy. Some collective demands (e.g., ALLGATHER) consist
of sources that send the same data to multiple destinations (i.e.,
multicast). Traditional TE does not model copy (e.g., SWAN
and B4 [14, 16]) and produces sub-optimal solutions (see
Figure 1c). Multi-cast TE [10, 22] addresses this problem but
fails to model delay (these works assume sustained demands)
and, in some instances [22], store-and-forward.

We formulate the collective communication optimization
problem as a TE problem that supports these elements. The
challenge is to maintain scalability. We show our model,
as-is, outperforms current state-of-the-art solutions such as

3

𝛼1 𝛼1 𝛼1 0

𝛼2

𝑠1 ℎ1 ℎ2 ℎ3 𝑑

𝑠2

𝛼2 = 2𝛽 + 3𝛼1
TE solutions’ cost estimate: 𝛼2 + 4𝛽

Correct cost estimate: 𝛼2 + 3𝛽

(a) Proper modeling of 𝛼 delay

1 2
1

1
𝑠2 ℎ 𝑑

𝑠1

𝑠3
𝑠𝑖 − ℎ are 1 unit/s capacity
ℎ − 𝑑 is 2 units/s capacity

Without store and forward: 3 solutions
With store and forward: 3 + 3 solutions

(b) Modeling store and forward

1 1
1

1
𝑠 ℎ 𝑑2

𝑑1

𝑑3

Without copy: 4 sec
With copy: 2 sec

(c) Modeling copy
Figure 1: Examples that show why we should model properly: (a) 𝛼-delay: the maximum delay across all the paths is an
incorrect estimate; (b) store-and-forward: buffers improve the solver time as there are more solutions (c) Copy: we can
leverage copy to use the available bandwidth more efficiently.

10 2 10 1 100 101

Transfer size (MB)

0

20

40

60

80

100

Re
la

tiv
e

er
ro

r i
n

 a
lg

or
ith

m
 b

an
dw

id
th

 e
st

im
at

e

Figure 2: The relative error in the algorithm bandwidth
estimate (the output buffer size / transmission time) of a
collective schedule that does not model alpha compared
to one that does. We use a proprietary topology from a
public cloud with 2 chassis, 8 GPUs, and 40 edges where
the 𝛼 of inter-GPU and the GPU to the switch links is 0.6
and 0.75 microseconds respectively.
SCCL [5] in its ability to scale and TACCL [27] in its so-
lution quality. We further improve it’s scalability through a
technique inspired by 𝐴∗ from robotics.

3 Solution
We next describe how we model the collective communication
problem as a multi-commodity flow problem. We build on
the ideas in Calendaring [17] and Netstitcher [18] to model
delay, model store-and-forward, and copy.

But this solution does not scale to topologies with more
than 64 GPUs. We scale it by changing our mixed integer
program (MILP) into a linear program (LP) for demands
such as ALLTOALL where sources send different data to each
destination and do not benefit from copy (§ 4.1); and through
a more general solution we call 𝐴∗(Appendix D).

3.1 The general model
We describe our notation in Table 1. Like any other multi-
commodity flow problem we need to specify: capacity and
flow conservation constraints, and an objective.

0.5

0.5

0.5

0.5

𝑠

𝑑1

𝑑2

𝑑3Epoch 0 one chunk
(as two halves)

Epoch 1

Epoch 1

Epoch 2

Figure 3: An example of why we need integer variables to
track each chunk. If we allow partial chunks (,) and
copy at the same time, we run into a situation where the
optimization can send the same copy of part of a chunk
() to two neighboring nodes (in this case 𝑑1 and 𝑑2) and
they can forward it along to the destination (𝑑3). Since the
formulation has no way of knowing these two halves are
the same, it thinks 𝑑3 has received the full chunk.

But, to model delay, store-and-forward, and copy we need
to introduce a few new concepts: chunks, epochs, and buffers.

Our notion of chunks is similar to prior work (e.g., SCCL):
a chunk (like packets) is a block of bytes1.

We use epochs (similar to how SCCL uses rounds) to make
time discrete: epochs are fixed periods of time — our solution
produces a schedule that tells the user in which epoch they
should send a chunk and on which link.

We discuss chunk sizes and epoch durations in detail in
§ 5. For now, we assume 𝜏 is the epoch duration and 𝑇𝑖 𝑗 is
the capacity of a link (where the units are chunks per second),
and that epoch is sufficient for at least one chunk to traverse
any link.

We use buffers to model store-and-forward. To simplify
the explanation we assume each node has enough buffer to
store the entire network demand if it needs to (we show how
to remove this assumption in Appendix B).

To model copy, we need to track each chunk: we use 𝐹𝑠,𝑖, 𝑗,𝑘,𝑐
and 𝐵𝑠,𝑖,𝑘,𝑐 to track whether chunk 𝑐 from source 𝑠 is going
over link (𝑖, 𝑗) or is in node 𝑖’s buffer at epoch 𝑘 respectively.

1We allow our solution to split chunks into smaller blocks when we move to
the linear program form.

4

Variable Description
𝑁 Set of nodes in the graph
𝑆 Set of nodes in the graph that are switches (𝑆 ⊂ 𝑁)
𝐸 Set of edges in the graph (𝐸 ⊆ 2𝑁×𝑁). Edges are unidirectional.
𝐶 Chunk IDs (𝐶 = {0, 1, 2, . . . , C}). Each node has ≤ C + 1 number of chunks.
𝐷 Demand function (𝑁 ×𝐶 × 𝑁 → {0, 1}) where 𝐷𝑠,𝑐,𝑑 is whether destination 𝑑 wants chunk with id 𝑐 from node 𝑠
𝜏 Epoch duration
𝐾 The set of epochs (𝐾 = {0, 1, 2, . . . , K})
𝐹𝑠,𝑖, 𝑗,𝑘,(𝑐) Amount of source 𝑠 chunks that are going over link (𝑖, 𝑗) ∈ 𝐸 at epoch 𝑘 ∈ 𝐾
𝐵𝑠,𝑖,𝑘,(𝑐) Amount of source 𝑠 chunks that are in node 𝑖’s buffer at the start of epoch 𝑘
𝑇𝑖 𝑗 Capacity of link (𝑖, 𝑗) ∈ 𝐸
𝛼𝑖 𝑗 Fixed latency associated with link (𝑖, 𝑗) ∈ 𝐸
𝛿𝑖 𝑗 Number of epochs contained within an 𝛼𝑖 𝑗 for each link (𝑖, 𝑗) ∈ 𝐸
R𝑠,𝑑,𝑘 Source 𝑠 chunks that node 𝑑 read off of the network in epoch 𝑘
R𝑠,𝑑,𝑘,(𝑐) Source 𝑠 chunks read off the network by 𝑑 up to epoch 𝑘 .

Table 1: Our notation. We put in parentheses the index (c) because we only use it when demands benefit from copy. When
we model copy the values of 𝐹 and 𝐵 are integers. We show for some demands (where copy is not useful) we can use real
variables instead in § 4.1.

We need to use integer variables for 𝐹𝑠,𝑖, 𝑗,𝑘,𝑐 and 𝐵𝑠,𝑖,𝑘,𝑐 to
model copy — we cannot allow chunks to be split into smaller
pieces. We use the example in Figure 3 to explain why. Source
𝑠 sends the first half of a chunk () to both destinations 𝑑1
and 𝑑2. These nodes then both forward it to 𝑑3: they have no
way of knowing this is the same half. The optimization now
thinks it has delivered the full chunk to 𝑑3 while it has only
delivered one half of it twice: it will send the second half of
the chunk to both 𝑑1 and 𝑑2 but not to 𝑑3. Using integers for
𝐹𝑠,𝑖, 𝑗,𝑘,𝑐 and 𝐵𝑠,𝑖,𝑘,𝑐 allows us to avoid this problem (we do not
need this for demands that do not benefit from copy § 4.1).
We can increase the number of chunks to decrease the size
of each individual chunk and support smaller transmission
blocks (the optimization automatically consolidates them to
bigger transmission units if needed) — but this increases the
number of variables and slows down the optimization.

We now have everything we need:
Capacity constraints. Capacity constraints ensure we do not
send more data than the link can carry in an epoch. We have:

Capacity Constraint
(
𝑖, 𝑗, 𝑘

)
≜∑︁

𝑠∈𝑁

∑︁
𝑐∈𝐶

𝐹𝑠,𝑖, 𝑗,𝑘,𝑐 ≤ 𝑇𝑖 𝑗𝜏

Flow conservation constraints. The purpose of these con-
straints is to ensure the network does not create or lose traffic.
The traditional form of these constraints specifies: a node
should either consume or forward all of the traffic it receives.
Here, we need to change these constraints to account for: (a)
copy — nodes can create new traffic; (b) delay.

To model delay, we need to ensure a node does not forward
a chunk if it has not received it. We first compute 𝛿𝑖 𝑗 =

𝛼𝑖 𝑗

𝜏
:

number of epochs it takes for a chunk to traverse a link. Traffic
that node 𝑖 sends to node 𝑗 at the beginning of epoch 𝑘 arrives
at node 𝑗 by the end of epoch 𝑘 + ⌈𝛿𝑖 𝑗 ⌉. Node 𝑗 can forward a
chunk it receives from node 𝑖 if node 𝑖 sent it ⌈𝛿𝑖 𝑗 ⌉ ago.

Copy, by definition, violates traditional flow conservation
constraints: it creates traffic where it didn’t exist before. But,
the node does not need to copy the chunk on the same link
in the same epoch. We use this, along with 𝛿𝑖 𝑗 to rewrite the
flow conservation constraints as follows:

Flow conservation constraints
(
𝑠, 𝑛, 𝑘, 𝑐

)
≜

𝐵𝑠,𝑛,𝑘,𝑐 +
∑︁

∀ 𝑗 | (𝑗,𝑛) ∈𝐸
𝐹𝑠,𝑗,𝑛,𝑘−⌈𝛿 𝑗𝑛 ⌉,𝑐 ≥ max

∀ 𝑗 | (𝑛,𝑗) ∈𝐸
𝐹𝑠,𝑛,𝑗,𝑘+1,𝑐

This constraint encodes that what the node 𝑛 has in its
buffer along with what it receives in epoch 𝑘 has to be larger
than what it sends out in the next epoch on each of its outgoing
links. We track the buffer contents as follows:

Buffer constraints
(
𝑠, 𝑛, 𝑘, 𝑐) ≜

𝐵𝑠,𝑛,𝑘,𝑐 = 𝐵𝑠,𝑛,𝑘−1,𝑐 +
∑︁

∀ 𝑗 | (𝑗,𝑛) ∈𝐸
𝐹𝑠,𝑗,𝑛,𝑘−⌈𝛿 𝑗𝑛 ⌉−1,𝑐

The buffers accumulate all traffic the GPU has received
up to that point. Nodes have enough memory for this: for
collective demands such as ALLGATHER each GPU needs
all the chunks that are sent over the network and stores them
anyway. But it is straight-forward to model limited buffers
as well if we track what we should remove from the buffer
in each epoch (see Appendix B). We evaluate the benefit of
buffers using an ALLGATHER demand in § 6.

5

The first and last epoch’s flow conservation constraints are
slightly different from the above: a node does not receive
anything in the first epoch and doesn’t send anything in the
last. We refer the reader to the appendix for details due to
space constraints (see Appendix A).

We next need to account for demands: we need to make
sure all demands are met at the end.
Destination constraints. These constraints ensure each node
receives its full demand by the end:

Destination constraints
(
𝑠, 𝑑, 𝑘, 𝑐

)
≜

R𝑠,𝑑,𝑘,𝑐 = min(𝐷𝑠,𝑑,𝑐 , 𝐵𝑠,𝑑,𝑘+1,𝑐) &
R𝑠,𝑑,K,𝑐 = 𝐷𝑠,𝑑,𝑐

where R𝑠,𝑑,𝑘,𝑐 is whether 𝑑 has received chunk 𝑐 of source
𝑠 by epoch 𝑘 . These destination constraints are different from
their counterparts in traditional TE models. This is because of
copy: 𝑑 may want a chunk and also relay the chunk to others.
Hence, we cannot assume 𝑑 wants to consume everything in
its buffers. This is why we take the minimum of 𝐷𝑠,𝑑,𝑐 and
𝐵𝑠,𝑑,𝑘+1,𝑐 . We ensure 𝑑 eventually receives its full demand by
the last epoch K by setting R𝑠,𝑑,K,𝑐 to 𝐷𝑠,𝑑,𝑐 .

Modeling switches. So far, we have only modeled the be-
havior of GPU nodes. While some topologies (e.g., within
a single DGX1 node [5]) only consist of GPUs, almost all
larger topologies use switches to connect GPU blocks. We
have to model switches differently because they have limited
memory: we cannot buffer chunks at the switch. Hence, we
set the buffer at each switch to zero.

Traffic needs to pay the 𝛼 delay cost of two links to cross
a switch: one from the node to the switch and one from the
switch to the node.

Most of today’s switches support copy [9], and so we
model switches with this assumption (switches have the same
flow conservation constraint as other nodes). But we can also
model switches without this capability to support legacy hard-
ware. One way is to replace the flow conservation constraints
at the switch with the traditional TE flow conservation con-
straints (what comes into the switch must go out).

Another option is to use the approach from TACCL [27]: re-
place switches with hyper-edges and allow the user to choose
which hyper-edges to allow. For this second model we need
to add additional constraints and due to limited space we refer
the reader to Appendix C for the details.

The former two approaches are easier to use in practice: the
user does not need to specify a sketch (which is a crucial in
TACCL) or pick which GPU communicates with which other
GPU — when we looked at the TACCL code we found the
authors used their uc-min and uc-max strategy along with
the user-specified sketch to automatically find which links to
enable for switches within the node, but for cross-node links

they pre-identified which links perform best manually. We
need to understand the topologies well to write such sketches
and we found it difficult when we evaluated new topologies
with TACCL. In contrast, our solution requires no human in
the loop — the user only needs to specify the topology and
the demand matrix — but the solver is slightly slower.
The objective. Our optimization objective is to finish the
transfer as quickly as possible. We can encode this as follows:

Objective function ≜
∑︁

∀𝑘∈𝐾,∀𝑠,𝑑∈𝑁 :𝑠≠𝑑

1
𝑘 + 1R𝑠,𝑑,𝑘

Notice how the objective gives fewer rewards as 𝑘 increases:
the objective improves if the schedule satisfies the demand
as soon as possible. If we combine the objectives with our
constraints we arrive at an optimization that maximizes the
objective subject to all of the above constraints.

One nuance here is that the optimization has multiple op-
tima: the objective does not discourage solutions where we
send flows that do not satisfy any demand (as long as the
schedule satisfies all demands as quickly as possible the solu-
tion is optimal). Such solutions are clearly wasteful.

To avoid such silly cases, we can do one of two things:
(a) we can either add a term to the objective to discourage
unnecessary flows; or (b) we can zero out those flows in post-
processing the solutions. The first results in higher solver run-
times as it becomes harder for the solver to prove optimality.

We use the latter approach where we run an algorithm
similar to a reverse DFS. We start from each destination, and
track the flows from that destination to the source until we
account for its entire demand. We then remove (zero-out) all
remaining flows as there is no demand corresponding to them.
This takes O(|𝑁 | + |𝐸 |) time where 𝑁 is the number of nodes
in the graph and 𝐸 is the number of edges.

4 Scaling

Our formulation is general and pushes beyond the scale
boundaries of SCCL and outperforms the solution quality
of TACCL. But it is slow for topologies with more than 32
chassis. We next show two methods to scale this solution. The
first works in situations where copy is not useful (e.g., ALL-
TOALL) and preserves optimality. The second is general (i.e.,
supports copy): it solves the problem by partitioning it in time
(its goal, in each time partition, is to make as much progress
as it can towards finishing the transfer). This later model is
sub-optimal, but outperforms the TACCL heuristic (see § 6)
as it more accurately captures the optimization incentives and
constraints. Its formulation allows users to trade-off optimal-
ity and speed by changing the number of partitions (smaller
partitions increase sub-optimality but improve scalability).

6

4.1 Scaling by converting to a linear program
There is only one reason we needed integer variables for our
model: copy! But some demands do not benefit from copy —
this is when each destination wants a unique segment of infor-
mation from each source. In these scenarios we can change
our formulation into a linear program (LP). LPs are convex
optimization programs which we can solve in polynomial
time and scale much better than MILPs.

We remove support for copy and modify the flow conserva-
tion constraints back to their traditional form. The following
constraint dictates: a node either buffers a chunk it received,
forwards it in the next epoch, or consumes it. Notice a node
can consume a chunk it received at the end of an epoch. We
do not track individual chunks since we no longer need to
worry about duplicates. This reduces the number of variables.

Flow conservation constraints
(
𝑠, 𝑛, 𝑘

)
≜∑︁

{ 𝑗 | (𝑗,𝑛) ∈𝐸}
𝐹𝑠,𝑗,𝑛,𝑘−⌈𝛿 𝑗𝑛 ⌉ + 𝐵𝑠,𝑛,𝑘 =

𝐵𝑠,𝑛,𝑘+1 + R𝑠,𝑛,𝑘 +
∑︁

{ 𝑗 | (𝑛,𝑗) ∈𝐸}
𝐹𝑠,𝑛,𝑗,𝑘+1

The flow conservation constraints for switches are different:
a switch does not consume chunks and does not buffer them —
we remove those terms from the flow conservation equations.

Since destinations no longer need to both consume and
forward chunks, we can modify the destination constraints:

Destination constraint
(
𝑠, 𝑑, 𝑘

)
≜

R𝑠,𝑑,𝑘 =

𝑘∑︁
𝑟=0

R𝑠,𝑑,𝑟 &

R𝑠,𝑑,K =
∑︁
∀𝑐
𝐷𝑠,𝑑,𝑐

Our LP produces a rate allocation to demands that origi-
nate from each source on each link. From this we generate
a schedule that we then execute in hardware (we translate
these rates to paths for each chunk through the same DFS-
like solution we described earlier). This is a straight-forward
algorithm — TE solutions also use similar algorithms that we
can adopt [17, 18] — and we omit it due to space constraints.

4.2 Scaling using the 𝐴∗ technique
The LP form allows us to scale the solution to large topologies,
but it does not permit copy. Copy is important for demands
such as ALLGATHER (see § 2). We also provide a second
scaling method inspired by the 𝐴∗ technique in robotics [12].

We partition the problem into multiple rounds. In each
round we no longer find a solution that satisfies all demands
but instead motivate the solver to make as much progress
towards this goal as it can. These optimizations have fewer

variables and are faster. We sequentially solve them one after
the other until we reach a round where we meet all demands.

Here we need to address two new modeling challenges:
Encoding the right incentives. We need to remove the con-
straint that required the optimization to meet all demands by
the last epoch — otherwise the optimization in each round
may become infeasible. This means our objective function
is no longer sufficient: it only says if it is feasible to satisfy
a demand do so as fast as possible, but it does not reward
incremental progress — we need to augment our objective
with a term that rewards the optimization for moving data
closer to the destinations in each round. But how to do this in
a way that preserves the MILP format?

We augment our topology with logical links that allow us
to compute this reward function: we add logical edges to the
graph that connect each node to all the destinations and add
weights to each of these logical edges that correspond to the
minimum distance — we compute these weights using the
Floyd Warshall algorithm [15] and the 𝛼-delay cost of each
edge — from the node to each destination. We can now use
these edges to encode a viable cost function which we can
add to our original objective. Due to space constraints we
refer the reader to the Appendix D for the details.
Modeling delay. Chunks that we send on any link (𝑖, 𝑗) my
not reach 𝑗 by the end of the round (because of the 𝛼𝑖 𝑗 -delay
on that link) but instead arrive in a future round. We there-
fore need to maintain state from one round to the next and
incorporate these late arrivals in our formulation.

We refer the reader to the appendix for the full formulation.

5 Important Considerations
Earlier we described how to formulate collective communica-
tion optimization using a TE approach. All three formulations
(the general MILP form, the LP form, and 𝐴∗) find solutions
for any input demand but only the general MILP form and
the 𝐴∗ model support copy. There are a number of parameters
in these formulations we need to choose carefully:
Epoch durations and chunk sizes. A side-effect of using in-
teger variables in the MILP formulation and the𝐴∗-based tech-
nique is that the choice of chunk-size and epoch duration is
important (the LP is not sensitive to these settings) — smaller
epochs allow for finer-grained schedules that better leverage
the available network capacity. To find the best chunk size
we can sweep a range of values to find the best one quickly.
We can also take this as an input — smaller chunks allow for
finer grained schedules but can increase the resource usage on
a node. Users can also utilize solutions such as [19] to pick
what is optimum for their work-flow.

To set the epoch duration we can do one of two things: (a)
to get the best schedule from the vanilla MILP formulation
we can set the epoch duration to the time it takes the slowest
link to transmit a chunk — the MILP cannot send anything

7

if we use smaller epochs because of the capacity constraints;
(b) we can set the epoch duration based on the time it takes
the fastest link to transmit a chunk. Option (b) enables the
MILP to produce finer grained schedules but to use it we have
to modify the capacity constraints and the flow conservation
constraints: the capacity constraints ensure we don’t exceed
the capacity constraint on the slowest link and the flow con-
servation constraints ensure we do not forward a chunk before
receiving it. Due to space constraints we refer the reader to the
appendix for the details (see Appendix F). We compare the
two approaches in § 6. Option (b) produces better schedules
which is why we use it for most of our evaluations.
Number of epochs. We need to input an upper bound on
the number of epochs which estimates how many epochs it
may take to fully satisfy the demand: pick too small a number
and the optimization will be infeasible, pick too large of a
number and the MILP will be too large and too slow. To
streamline finding the right number of epochs — and to not
burden the user with having to identify what numbers to use
— we develop a simple algorithm which finds a loose upper
bound on how long we need to satisfy all the demands.

To find this number, we quickly sweep a range of transmis-
sion times: for each transmission time, we use coarser grain
epoch durations (very large epochs) and run the optimization.
Because we use large epoch sizes, we have fewer variables,
which allows us to solve the optimization quickly. The solu-
tion of these runs is not optimal (because the epochs are too
coarse), but it gives us an idea of how long we need when we
switch to the optimal epoch duration. We describe the process
in detail in Algorithm 1 in the Appendix E. We use the output
to initialize the optimization which automatically identifies if
a lower number of epochs is sufficient.
Number of epochs in a round in 𝐴∗. We solve round af-
ter round of 𝐴∗ until we deliver all the demands. Users can
choose how many epochs to use in each round. The smaller
the number of epochs in a round, the faster the optimization
and the higher the optimality gap. Picking a small number of
epochs per round also impacts the state we need to maintain.
In our experiments, we set the number of epochs such that
chunks do not arrive later than one round in the future.
The topology, 𝛼 , and 𝛽 inputs. TE-CCL takes the topology
and the values for 𝛼 and 𝛽 as input. We do not provide an
independent method for computing these values.
Which switch model to use. We provide two switch models:
one that allows the switch to copy chunks (to model networks
with the SHArP protocol [9] enabled) and one which does not
(the latter is similar to TACCL’s hyper-edge model). It is up
to the user to decide which model to use in the optimizer.
Modeling variable bandwidth. Our model supports net-
works with variable bandwidth. To add support for this, we
have to assume bandwidth only changes from one epoch to

the next. We can then take the capacity matrix for each epoch
and use that in our capacity constraints.
Use in multi-tenant clusters. TE-CCL supports multi-tenant
communication optimization: all our models accept a network
demand as input — to model a multi-tenant environment we
have to change the demand matrix to the sum of the demands
across all collectives. The capacity constraints will ensure we
do not exceed network capacity and the objective ensures we
minimize the total completion time across all tenants.

We can also support priorities across tenants (i.e., prior-
itizing one tenant’s completion time over the others) if we
add a separate buffer and read variable for each tenant: we
can then add the priorities the objective function. This change
increases the number of variables in the MILP which slow it
down — we may have to use 𝐴∗ in this case but this does not
impact the quality of the solution compared to when we solve
a single tenant problem at the same scale.
Scaling through intermediate solutions. The solver we use,
Gurobi [25], often finds an optimal solution and then spends
a long time proving it is optimal — often the solution does
not improve even after the solver runs for an additional 10
hours. We therefore apply a timeout and stop the solver after
2 hours and use the solution at that point. Gurobi reports its
progress through the primal-dual gap [4].

6 Evaluation
We implement our solution in Python. We use Gurobi [25]
to solve the optimizations. We convert our solution into
MSCCL [5], which can then port it into a schedule that runs
on the hardware. We plan to release our code.

The goal in this evaluation is to:
• Compare TE-CCL to state-of-the art: both in scale and

in terms of solution quality.
• Show TE-CCL scales to the large topologies.
• Show the impact of each of our different design choices.

Metrics. We use the following metrics to evaluate TE-CCL:

Solver time. The time it takes — which includes the time
to setup the variables and constraints in the solver — to solve
the collective optimization problem.

Transfer time. The time it takes for the transfer to complete:
for all the nodes to receive their full demand.

Output buffer size. The data each GPU receives once we
satisfy the demand (we borrow this from TACCL [27]).

Transfer size. The amount of data each GPU sends to
others: for example, a GPU in an ALLGATHER demand with
a transfer size of 1 GB sends 1 GB of data to each other GPU.

Algorithmic bandwidth. The output buffer size divided by
the transfer time (this metric is from TACCL [27]).

Topologies and workloads. We evaluate TE-CCL using the
topologies in Table 2. We use common topologies such as

8

Topology # of GPUs per chassis # of edges per chassis
Internal 1 4 8
Internal 2 2 2
DGX1 8 32
NDv2 8 32
DGX2 17 32

Table 2: Our topologies. The internal topologies are from
a large public cloud and are proprietary: 𝛼 is 0.6𝜇𝑠 and
0.75𝜇𝑠 on their GPU to GPU and GPU to switch links.

DGX1, DGX2 [23], and NDv2 [2] as well as two proprietary
topologies from a public cloud provider.

TE-CCL variants. We use three variants of TE-CCL in our
evaluations: the optimal (where we use the vanilla MILP for
ALLGATHER and LP for ALLTOALL), the early-stop version
for ALLGATHER (where we use Gurobi’s ability to find a
good solution – which is at most 30% away from optimal –
quickly), and 𝐴∗ for ALLGATHER.

Gurobi runs into numerical issues with ALLTOALL on
large topologies (more than 64 nodes): we need to run it with
a different configuration (method = 2 [11]) which causes
it to produce a feasible (but not optimal) solution. In those
cases, we run the solver in a loop and do a binary search (on
the number of epochs) to find the optimal solution.

We set the epoch duration based on the bandwidth of the
fastest link. In the cases where 𝛼 > 200 × 𝜏 we increase
the epoch duration by 5× to avoid large models (since 𝛼
dominates this does not materially impact the solution).

TE-CCL solves optimization problems to produce a sched-
ule, and the optimization is deterministic, outputting the same
number of epochs to meet the demand every time we run it.
The solver times also do not vary significantly for a given
optimization across runs. Baselines. We compare our solution
to two state-of-the-art solutions: TACCL [27] and SCCL [5].

TACCL. We obtained the TACCL code from the authors
and track and report the solver time. TE-CCL takes an ad-
ditional 𝛽 compared to TACCL to route chunks through a
switch: TACCL replaces the switch with direct edges between
the nodes and only pays one transmission delay to cross that
link whereas TE-CCL models the switch itself and pays two
transmission delays — one from the node to the switch and
one from the switch to the node. To compare fairly against
TACCL we change our model of the switch to do the same
when comparing with TACCL.

SCCL. We compare to SCCL using the public SCCL code-
base [20] and also re-ran our experiments using the SCCL
artifact from their submission (which the authors gave us).
We verified and confirmed with the authors we used SCCL
correctly and that our numbers are correct.

Platform. We use the solvers and the schedules they produce
to compute the transfer times and algorithmic bandwidth for

Collective, # chunks SCCL (𝜇s) TE-CCL (𝜇s)
ALLGATHER, 1 3.4 4
ALLGATHER, 2 5.1 5
ALLGATHER, 3 8 6.1
ALLTOALL, 1 3.4 4

Table 3: Comparing the transfer time from SCCL
least-steps with TE-CCL (K = 10 and chunk size
= 25 KB). TE-CCL can better pipeline chunks and so
pays less 𝛼 cost with larger transfers.

SCCL, TACCL, and TE-CCL. We checked using a single
8 GPU DGX1 node that these estimates match what we get
from running on hardware for both TE-CCL and TACCL.

We report the capacity and delay for the public topologies
in the Appendix H.

Unexplored avenues. We show from testing on a DGX1 that
TE-CCL’s estimates of collective latency match the actual
runtimes on prototype hardware. We do not have access and
the budget to run hardware experiments at scale on different
kinds of GPUs. Thus, the effect of factors such as congestion,
message batch sizes and other GPU implementation artefacts
on the collective latency remains an unknown. But our results
on all of the other metrics such as solver times and our ability
to scale to large topologies hold regardless.

6.1 Comparison to SCCL and TACCL

SCCL. SCCL has two modes: one minimizes latency
(least-steps) and one produces an instance solution
(instance) with the number of chunks, rounds, and steps
as input.

Our solution is equivalent to the former but the SCCL
least-steps command took over a day to produce a so-
lution for ALLGATHER demands with more than 3 chunks
and ALLTOALL demands with more than 1 chunk on a DGX1
topology (the SCCL paper does not evaluate this mode). In
contrast, we ran TE-CCL with max𝐾 = K = 10 (the maxi-
mum number of epochs the optimization can use to satisfy the
demand) and 25𝐾𝐵 chunks, and it finished in ≤ 0.65𝑠 for all
ALLGATHER demands and ≤ 0.97𝑠 for ALLTOALL demands
with less than 5 chunks.

We used 25𝐾𝐵 chunks to capture the impact of 𝛼 (𝛼 =

0.7𝜇s) on the solutions (Table 3): for all > 1 chunk cases
TE-CCL outperforms SCCL as it models the 𝛼 delay better —
it ensures a node receives a chunk before forwarding it but
pipelines traffic; SCCL enforces a barrier instead. SCCL per-
forms better in the 1 chunk case as TE-CCL cannot leverage
its ability to pipeline.

We also compare with SCCL’s instance solution (due to
space constraints, we show the results in the Appendix G). To
create an apples-to-apples comparison, we use the number of
rounds in SCCL for K in TE-CCL — since SCCL is no longer
running an optimization — and use 𝛼 = 0 (this is necessary as

9

1G 256M 64M 16M 4M 1M 256K 64K 16K 4K 1K
Output buffer size

0

500

1000

1500

2000

2500

3000

In
cr

ea
se

 in
 a

lg
o

ba
nd

wi
dt

h
(%

)

X XX X

2 ch, AG, ES
2 ch, AG, opt
4 ch, AG, ES
4 ch, AG, opt
2 ch, AtoA
4 ch, AtoA

(a) NDv2

1G 256M 64M 16M 4M 1M 256K 64K 16K 4K 1K
Output buffer size

0

500

1000

1500

2000

2500

3000

In
cr

ea
se

 in
 a

lg
o

ba
nd

wi
dt

h
(%

)

X

2 ch, AG, ES
2 ch, AG, opt
2 ch, AtoA

(b) DGX2

1G 256M64M 16M 4M 1M 256K 64K 16K 4K 1K
Output buffer size

0

100

200

300

400

500

600

700

In
cr

ea
se

 in
 a

lg
o

ba
nd

wi
dt

h
(%

)

X
X

X

X

X

X X X X X

2 ch, AG
4 ch, AG
8 ch, AG
2 ch, AtoA

(c) Internal 1

1G 256M 64M 16M 4M 1M 256K 64K 16K 4K 1K
Output buffer size

0

1000

2000

3000

4000

5000

6000

In
cr

ea
se

 in
 a

lg
o

ba
nd

wi
dt

h
(%

)

X

X X X X X X X X

2 ch, AG
4 ch, AG
8 ch, AG
16 ch, AG
32 ch, AG
64 ch, AG

(d) Internal 2

Figure 4: Compares the algorithmic bandwidth of TE-CCL and TACCL (100(𝑇𝐸𝐶𝐶𝐿−𝑇𝐴𝐶𝐶𝐿)
𝑇𝐴𝐶𝐶𝐿

). We mark the scenarios
where TACCL is infeasible — which cause dips in the graph — using an X.

2 ch
 AG
 ES

2 ch
 AG
 opt

2 ch
 AtoA

4 ch
 AG
 ES

4 ch
 AG
 opt

4 ch
 AtoA

 # chassis, demand type

101

102

103

104

Sp
ee

du
p

in
 so

lv
er

 ti
m

e
(%

)

(a) NDv2

2 ch
 AG
 opt

2 ch
 AG
 ES

2 ch
 AtoA

 # chassis, demand type

10 1

100

101

102

103

104

Sp
ee

du
p

in
 so

lv
er

 ti
m

e
(%

)

(b) DGX2

2 ch
 AG

4 ch
 AG

8 ch
 AG

2 ch
 AtoA

 # chassis, demand type

101

102

103

Sp
ee

du
p

in
 so

lv
er

 ti
m

e
(%

)
(c) Internal 1

2 ch
 AG

4 ch
 AG

8 ch
 AG

16 ch
 AG

32 ch
 AG

 # chassis, demand type

101

102

103

104

Sp
ee

du
p

in
 so

lv
er

 ti
m

e
(%

)

(d) Internal 2

Figure 5: Compares the solver time of TE-CCL and TACCL (100(𝑇𝐸𝐶𝐶𝐿−𝑇𝐴𝐶𝐶𝐿)
𝑇𝐴𝐶𝐶𝐿

). Ch stands for chassis, ES early stop,
AG ALLGATHER, and AtoA ALLTOALL. We use log scale for the y-axis to improve resolution. TE-CCL is faster than
TACCL on 45% of ALLTOALL scenarios and 40% of ALLGATHER scenarios (with early stop) on the NDv2 topology; 72%
and 27% for DGX2; 72% and 83% for Internal 1; and 100% and 50% for Internal 2.

our model will need more epochs otherwise to account for 𝛼).
We use the scenarios from Table 4 in SCCL [5] and run both
solvers on a desktop with 6 cores and 32 GB RAM. SCCL
failed to produce a solution for ALLGATHER workloads with
more than 1 chunk even after 3 days. TE-CCL runs faster
than SCCL in almost all cases and even improves SCCL’s
solution quality by 33% in the ALLTOALL scenario. TE-CCL
is slower than SCCL in one instance ((6, 7)): this is because
in TE-CCL we solve for the optimal number of epochs, and
we use a value for K that is too tight — we can reduce the
solver time to 11 seconds by increasing K to 20 (the quality of
the solution does not change). We can use the 𝐴∗ technique
to speed up the solution further.

To fully highlight our runtime advantage over SCCL, we
ran an ALLTOALL demand with 8 chunks using both solvers:
SCCL timed out after 10032.7s and did not produce a sched-
ule, whereas ours finished in 1.88s with a valid schedule that
finished the transfer in 21𝜇s (for 25KB chunks).

TACCL. We compare the solver time and algorithmic band-
width of TE-CCL and TACCL using ALLGATHER and ALL-
TOALL demands and on DGX2 and NDv2 based topologies
with up to 34 nodes (a 2-chassis DGX2 topology has 34 nodes)
and on both internal topologies with up to 128 nodes. We ran
all experiments on a Linux Ubuntu 20.04 VM with two Intel
Xeon(R) Platinum 8380 CPUs with a total of 80-cores/160-
threads and 512 GB RAM and used Gurobi 9.5.2 version as

our solver. TACCL ALLTOALL does not terminate for large
topologies (including the 2 chassis DGX2 ALLTOALL) — we
use a timeout of 2 + 2 hrs or 4 + 4 hrs for their routing and
scheduling phases depending on the topology size.

TACCL ran out of memory and did not produce a solution
for large Internal 2 topologies (with over 64 chassis) and for
almost all Internal 1 topologies (with over 4 chassis). Table 4
reports the numbers for TE-CCL on ≥ 64 nodes topologies.

TACCL scales better on the NDv2 topology compared to
internal topologies 1 and 2. In NDv2 only 2 nodes in a chassis
connect to a switch but in internal topologies 1 and 2 many
nodes in a chassis are connected to a switch — TACCL re-
places the switch with direct edges; as we increase the size
of internal topologies 1 and 2 the number of such edges in-
creases exponentially. The TACCL authors recommended we
use a sketch that only uses a subset of these edges. Doing so
improved the runtime for smaller topologies but TACCL still
failed to produce a solution after 8 hours for larger ones.

TE-CCL often produces higher quality solutions compared
to TACCL (in some cases TACCL fails to produce a schedule
and times out — we show those cases with an X): on DGX2
the improvement is at least 12% and 9% (maximum 471%
and 2979%) for ALLGATHER and ALLTOALL respectively;
on NDv2 0.36% and 0.18% (maximum 970% and 2919%); on
Internal 1 −5% and 20% (maximum 689% and 197%), and on
Internal 2, 0.33% and 0.48% (maximum 5759% and 12322%).
We show these results in Figure 4 and Figure 6 (we report

10

ALLTOALL numbers for Internal 2 separately for clarity). We
report the raw algorithmic bandwidths for TE-CCL variants
in the appendix (see Table 8) for NDv2 2 chassis as a sample.

2 ch
 AtoA

4 ch
 AtoA

8 ch
 AtoA

16 ch
 AtoA

32 ch
 AtoA

 # chassis, demand type

100

101

102

103

104

Sp
ee

du
p

in
 so

lv
er

 ti
m

e
(%

)

(a) Solver time

1G 256M64M 16M 4M 1M 256K 64K 16K 4K 1K
Output buffer size

0

2000

4000

6000

8000

10000

12000

In
cr

ea
se

 in
 a

lg
o

ba
nd

wi
dt

h
(%

)

2 ch, AtoA
4 ch, AtoA
8 ch, AtoA
16 ch, AtoA
32 ch, AtoA

(b) Transfer time
Figure 6: We compare TACCL and TE-CCL for ALL-
TOALL demands on Internal 2 with different number of
chassis. TE-CCL is faster than TACCL in all cases and
also produces higher quality solutions.

We use Gurobi’s early-stop for ALLGATHER demands to
improve TE-CCL’s ability to scale: this does not materially
impact the quality of TE-CCL’s solution — even with an
aggressive optimality gap threshold of 30% — but allows TE-
CCL to solve the problem faster in the ALLGATHER scenario
(we found TACCL also uses this under the hood – our solver
time matches TACCL even when TACCL uses this feature).
TACCL uses this early stop mechanism in the ALLTOALL
case as well but we run TE-CCL to completion: TE-CCL
always produces schedules that match or beat those of TACCL
and in many cases it produces these schedules more quickly.
We compare the two solver times in Figure 5.

6.2 Scale
TACCL often crashes on large topologies, either due to requir-
ing more than 400 GB RAM or memory leaks and segmenta-
tion faults. TE-CCL also requires a lot of memory in some
cases (around 350 GB for ALLTOALL on large topologies),
but we can control this by changing the epoch duration to
trade off the quality of the solution with the amount of mem-
ory the solver needs. Table 4 summarizes our results on large
topologies and reports the scale factor (EM). We use output
buffer sizes larger than 16 MB — as the number of GPUs
increases, chunks become too small beyond this point. We
adjust the epoch size by a factor of, at most, 4 for these cases
to limit memory usage.

6.3 Microbenchmarks
We next evaluate our design choices:

Copy. In-network copy is most helpful for large transfers
where there is not enough capacity to transfer multiple copies
directly from the source to each destination: we see in the
largest transfer size (0.21 GB) copy reduces the transfer time
by 50% for DGX1, the Internal 1 with 𝛼 = 0 and 𝛼 > 0, and

Topology Collective # GPUs EM Solver time
Internal 1 AG (A*) 64 1 3000 𝑠
Internal 1 AG (A*) 128 1 7 ℎ
Internal 2 AG (A*) 128 1 1300 𝑠
Internal 2 AG (A*) 256 2 2.8 ℎ
Internal 1 AtoA 16 1 66 𝑠
Internal 1 AtoA 32 1 215 𝑠
Internal 1 AtoA 64 1 500 𝑠
Internal 1 AtoA 128 2 800 𝑠
Internal 2 AtoA 128 1 2600 𝑠
Internal 2 AtoA 256 4 1500 𝑠

Table 4: Large Topologies for which TACCL can’t synthe-
size the schedule. The solver time is the average TE-CCL
time to synthesize the schedule and EM is the epoch multi-
plier factor to change the epoch duration from the optimal
duration for scalability.

10 2 10 1 100 101 102

Transfer size (MB)
0.000

0.002

0.004

0.006

0.008

0.010

0.012

Co
lle

ct
iv

e
fin

ish
 ti

m
e

(s
) no copy, DGX1

copy, DGX1
copy, Internal 1 (= 0)
no copy, Internal 1 (= 0)
copy, Internal 1
no copy, Internal 1
copy, Internal 2
no copy, Internal 2

Figure 7: The benefit of copy: for large transfers, copy
helps finish the transfer faster.
12.5% for Internal 2. In-network copy does not help with small
transfers as there is enough capacity between the source and
the destinations to send multiple copies of the data directly
from the source. We use 4 chunks to complete these transfers.

Small vs large epochs. We investigate how the duration of
epochs impacts the solver speed and the quality of the solu-
tion (Figure 8 where we use 2 chassis for each topology). In
ALLGATHER we only allow chunks to traverse one link in
a single epoch: the length of the longest path dominates the
transfer time when we use large epochs because the length
of the epoch is too large compared to how long it takes for
the chunk actually to traverse the link (on faster links). We
see this more predominantly in the NDv2 and DGX2 topology
where the fast links have 4× higher bandwidth (large epoch
duration is, therefore, 4× small epoch duration) compared to
slower ones. In contrast, we do not see a difference on Internal
1, where the links are mostly homogeneous.

Store and forward. We find a somewhat surprising result.
Buffers don’t impact the solution quality but only the solver
time (Figure 9)! This is because of the nature of collective de-
mands such as ALLGATHER and ALLTOALL: because each
node needs the same amount of traffic as it has to forward it

11

Int 1
 AG

Int 1
 AtoA

NDv2
 AG

NDv2
 AtoA

DGX2
 AG

DGX2
 AtoA

topology, demand

10 1

101

103

105

Sp
ee

du
p

in
 so

lv
er

 ti
m

e
(%

)

(a) Solver time

Int 1
 AG

Int 1
 AtoA

NDv2
 AG

NDv2
 AtoA

DGX2
 AG

DGX2
 AtoA

topology, demand

80

60

40

20

0

20

Sp
ee

du
p

in
 tr

an
sf

er
 (%

)
(b) Transfer time

Figure 8: We compare the impact of small vs large
epochs on the solver speed (a) and solution quality (b).
We use 2 chassis for all topologies. Both graphs compute
100(small−large)

large . The solver finds a solution faster with large
epochs but produces better quality solutions with small
ones.

Int 1
= 0

Int 1 Int 2 DGX1

topology, demand

400

300

200

100

0

100

200

Sp
ee

du
p

in
 so

lv
er

 ti
m

e
(%

)

(a) Solver time

Int 1
= 0

Int 1 Int 2 DGX1

topology, demand

100

80

60

40

20

0

20

Sp
ee

du
p

in
 tr

an
sf

er
 (%

)

(b) Transfer time
Figure 9: We evaluate the impact of buffers on
(a) and solution quality (b) solver time. We use
2 chassis for all topologies. Both graphs compute
100(without buffers−with buffers)

without buffers . Buffers don’t impact the so-
lution quality in most cases, but only the solver times! The
average speedups in solver time are: 61%, −28.46%, 0.23%,
71% for Internal 1 without 𝛼 , Internal 1 with 𝛼 , Internal 2,
and DGX1 respectively.
can interleave consuming traffic with forwarding it to com-
pensate for the lack of buffers. But in the presence of buffers
the feasible space of solutions is larger which in many cases
enables the solver to find the optimal solution more quickly
(the speedup is 71% and 61% for Internal 1 and DGX1 respec-
tively). We believe it is possible to formally prove this result
but defer this proof to future work.

𝐴∗ vs OPT. We compared the quality of the 𝐴∗ technique
to the optimal on a 16-chassis Internal 2 topology with both
𝛼 > 0 and 𝛼 = 0. We used both single chunk and 2 chunk
transfers.

When 𝛼 = 0, 𝐴∗ finished in 86.61s (263.29s for 2 chunk de-
mands) whereas the optimal took 346s (4392s for two chunks).
The optimal solution was 10% better than 𝐴∗ (6% in the 2
chunk case) — transfer times were 3.48s vs 3.89s.

The results are similar when 𝛼 > 0: 𝐴∗ finished in 137.02s
(901.25s for the 2 chunk case) whereas the optimal took

363.40s (3047s). The optimal solution was 20% better (8%
in the 2 chunk case).

7 Related work
TE-CCL provides a scalable method for collective com-
munication optimization by using a network flow-based ap-
proach. Our solution supports unsustained demands, store-
and-forward, and copy. Our work builds on prior work both
in network traffic engineering and in collective optimization:
Multi-cast TE. Prior works have looked at traffic engineering
for multi-cast networks [10, 22]. Oliveira and Pardalos [24]
provide a comprehensive summary of these works. Blink [29]
used these techniques to optimize collective communication
but does not model delay and store-and-forward.
WAN TE. Many prior works in networking use the network
flow model to scalably route traffic in wide area networks [1,
14, 16, 21]. However, most of these works assume sustained
demands, copy, and store-and-forward. Among these works,
Calendaring [17] provides a solution that models unsustained
demands. NetStitcher [18] adds to this the support for store
and forward but assumes flows do not compete for bandwidth.
Neither of these works simultaneously model copy, store-and-
forward, and delay.
Prior work on collective communication optimization.
Many prior work have tackled the collective communication
optimization problem [5, 26, 27, 29, 31]. We find these solu-
tions do not scale to the topologies and data sizes we have
in production today and those we anticipate for the future.
TACCL is the most scalable of these solutions, but it has
trouble scaling when it sends more than 1-2 chunks, and is
sub-optimal. Work such as [19, 30, 31] aims to co-optimize
either topologies and parallelization strategies ([30]) or col-
lective scheduling and execution planning [19]. These works
rely on collective communication optimizers as part of their
search but do not provide optimal solutions to the problem
themselves — they can use TE-CCL as part of their search.
Our work is complementary to these works.

8 Conclusion
We presented TE-CCL: a scalable collective communication
optimizer that models the problem through a TE-based ap-
proach. We provide three algorithms to solve this problem:
the MILP approach which optimally solves the general col-
lective communication optimization problem and supports
multi-cast; the LP form which is also optimal and much more
scalable but removes support for multi-cast; and finally the
𝐴∗-based approximation method which is much more scalable
than the MILP technique and continues to support multi-cast
but is no longer optimal. We show our solution outperforms
prior, state-of-the-art, techniques such as SCCL and TACCL
by over 2×.
This work does not raise any ethical concerns.

12

References

[1] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei
Zaharia, and Peter Bailis. 2021. Contracting wide-area network topolo-
gies to solve flow problems quickly. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). 175–200.

[2] Azure NDv2-series 2021. (2021). https://learn.microsoft.com/en-us/
azure/virtual-machines/ndv2-series

[3] Dimitris Bertsimas and John N Tsitsiklis. 1997. Introduction to linear
optimization. Vol. 6. Athena Scientific Belmont, MA.

[4] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization.
Cambridge University Press.

[5] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd
Mytkowicz, Jacob Nelson, and Olli Saarikivi. 2021. Synthesizing
Optimal Collective Algorithms. In Proceedings of the 26th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’21). Association for Computing Machinery, New York, NY,
USA, 62–75. https://doi.org/10.1145/3437801.3441620

[6] ChatGPT runs 10K Nvidia training GPUs with potential for thousands
more 2023. (2023). https://www.fierceelectronics.com/sensors/chatgpt-
runs-10k-nvidia-training-gpus-potential-thousands-more

[7] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and
Guang Lin. 2021. DeepLight: Deep Lightweight Feature Interactions
for Accelerating CTR Predictions in Ad Serving. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining
(WSDM ’21). Association for Computing Machinery, New York, NY,
USA, 922–930. https://doi.org/10.1145/3437963.3441727

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[9] John Matthew Simon Doar. 1993. Multicast in the asynchronous trans-
fer mode environment. Technical Report. University of Cambridge,
Computer Laboratory.

[10] M. Doar and I. Leslie. 1993. How bad is naive multicast rout-
ing?. In IEEE INFOCOM ’93 The Conference on Computer Com-
munications, Proceedings. 82–89 vol.1. https://doi.org/10.1109/
INFCOM.1993.253246

[11] Gurobi Algorithm used to solve continuous models 2023. (2023).
https://www.gurobi.com/documentation/9.1/refman/method.html

[12] Peter Hart, Nils Nilsson, and Bertram Raphael. 1968. A Formal Ba-
sis for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics 4, 2 (1968), 100–107.
https://doi.org/10.1109/tssc.1968.300136

[13] Roger W Hockney. 1994. The communication challenge for MPP: Intel
Paragon and Meiko CS-2. Parallel computing 20, 3 (1994), 389–398.

[14] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vi-
jay Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving
High Utilization with Software-Driven WAN. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13).
Association for Computing Machinery, New York, NY, USA, 15–26.
https://doi.org/10.1145/2486001.2486012

[15] Stefan Hougardy. 2010. The Floyd–Warshall algorithm on graphs with
negative cycles. Inform. Process. Lett. 110, 8-9 (2010), 279–281.

[16] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, et al. 2013. B4: Experience with a globally-deployed
software defined WAN. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 3–14.

[17] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj
Babbula. 2014. Calendaring for Wide Area Networks. In Proceedings
of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). As-
sociation for Computing Machinery, New York, NY, USA, 515–526.

https://doi.org/10.1145/2619239.2626336
[18] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, and Pablo

Rodriguez. 2011. Inter-Datacenter Bulk Transfers with Netstitcher. In
Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11).
Association for Computing Machinery, New York, NY, USA, 74–85.
https://doi.org/10.1145/2018436.2018446

[19] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya
Akella. [n. d.]. Better Together: Jointly Optimizing ML Collective
Scheduling and Execution Planning using SYNDICATE. ([n. d.]).

[20] MSCCL codebase [n. d.]. ([n. d.]). https://github.com/microsoft/msccl
[21] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft,

Akshay Agrawal, Srikanth Kandula, Stephen Boyd, and Matei Za-
haria. 2021. Solving Large-Scale Granular Resource Allocation
Problems Efficiently with POP. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP ’21). As-
sociation for Computing Machinery, New York, NY, USA, 521–537.
https://doi.org/10.1145/3477132.3483588

[22] C.A. Noronha and F.A. Tobagi. 1994. Optimum routing of mul-
ticast streams. In Proceedings of INFOCOM ’94 Conference on
Computer Communications. 865–873 vol.2. https://doi.org/10.1109/
INFCOM.1994.337651

[23] Nvidia DGX System 2021. (2021). https://www.nvidia.com/en-us/data-
center/dgx-systems/

[24] Carlos AS Oliveira and Panos M Pardalos. 2005. A survey of com-
binatorial optimization problems in multicast routing. Computers &
Operations Research 32, 8 (2005), 1953–1981.

[25] Joo Pedro Pedroso. 2011. Optimization with gurobi and python. INESC
Porto and Universidade do Porto„ Porto, Portugal 1 (2011).

[26] Saeed Rashidi, William Won, Sudarshan Srinivasan, Srinivas Sridharan,
and Tushar Krishna. 2022. Themis: A Network Bandwidth-Aware
Collective Scheduling Policy for Distributed Training of DL Models. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA ’22). Association for Computing Machinery, New
York, NY, USA, 581–596. https://doi.org/10.1145/3470496.3527382

[27] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,
Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and
Rachee Singh. 2021. TACCL: Guiding Collective Algorithm Synthesis
using Communication Sketches. (2021). https://doi.org/10.48550/
ARXIV.2111.04867

[28] Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett, Ennan Zhai,
Matt Brown, Todd Millstein, Yuval Tamir, and George Varghese. 2021.
Campion: Debugging Router Configuration Differences. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21).
Association for Computing Machinery, New York, NY, USA, 748–761.
https://doi.org/10.1145/3452296.3472925

[29] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil
Devanur, Jorgen Thelin, and Ion Stoica. 2020. Blink: Fast and generic
collectives for distributed ml. Proceedings of Machine Learning and
Systems 2 (2020), 172–186.

[30] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi,
Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch.
2022. TopoOpt: Co-optimizing Network Topology and Parallelization
Strategy for Distributed Training Jobs. (2022). https://doi.org/10.48550/
ARXIV.2202.00433

[31] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang Wang, Prithwish
Basu, Joud Khoury, and Arvind Krishnamurthy. 2022. Optimal Direct-
Connect Topologies for Collective Communications. (2022). https:
//doi.org/10.48550/ARXIV.2202.03356

13

https://learn.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://doi.org/10.1145/3437801.3441620
https://www.fierceelectronics.com/sensors/chatgpt-runs-10k-nvidia-training-gpus-potential-thousands-more
https://www.fierceelectronics.com/sensors/chatgpt-runs-10k-nvidia-training-gpus-potential-thousands-more
https://doi.org/10.1145/3437963.3441727
https://doi.org/10.1109/INFCOM.1993.253246
https://doi.org/10.1109/INFCOM.1993.253246
https://www.gurobi.com/documentation/9.1/refman/method.html
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/2619239.2626336
https://doi.org/10.1145/2018436.2018446
https://github.com/microsoft/msccl
https://doi.org/10.1145/3477132.3483588
https://doi.org/10.1109/INFCOM.1994.337651
https://doi.org/10.1109/INFCOM.1994.337651
https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.nvidia.com/en-us/data-center/dgx-systems/
https://doi.org/10.1145/3470496.3527382
https://doi.org/10.48550/ARXIV.2111.04867
https://doi.org/10.48550/ARXIV.2111.04867
https://doi.org/10.1145/3452296.3472925
https://doi.org/10.48550/ARXIV.2202.00433
https://doi.org/10.48550/ARXIV.2202.00433
https://doi.org/10.48550/ARXIV.2202.03356
https://doi.org/10.48550/ARXIV.2202.03356

A Initialization and termination constraints

We introduced the main constraints for the MILP and LP
formulations in § 3 and § 4.1. However, we need to add a
few additional constraints to initialize and terminate these
problems.
The first epoch. We use buffers to indicate when the node has
a specific chunk. In the first epoch of the MILP we initialize
the source buffers as follows:

𝐵𝑛,𝑛,0,𝑐 = max
𝑑∈𝑁

𝐷𝑛,𝑑,𝑐 ∀𝑛 ∈ 𝑁,∀𝑐 ∈ 𝐶

𝐵𝑠,𝑛,0,𝑐 = 0 ∀𝑠, 𝑛 ∈ 𝑁 : 𝑠 ≠ 𝑛,∀𝑐 ∈ 𝐶
We no longer need to buffer chunks we have already sent

out in the LP form and therefore these equations become:

𝐵𝑠,𝑛,0 +
∑︁

∀ 𝑗 :(𝑛,𝑗) ∈𝐸
𝐹𝑠,𝑛,𝑗,0 =

∑︁
∀𝑐∈𝐶,∀𝑑∈𝑁

𝐷𝑠,𝑑,𝑐 ∀𝑠, 𝑛 ∈ 𝑁 : 𝑠, 𝑛 ∉ 𝑆

The last epoch. In the LP we do not need to buffer chunks
if they are not going to be forwarded. Nodes also don’t need
to send out any traffic after this epoch. Therefore, in the last
epoch of the LP we have:

∀𝑠, 𝑛 ∈ 𝑁 : 𝑠 ≠ 𝑛, 𝑛 ∉ 𝑆
∑︁

∀ 𝑗 :(𝑗,𝑛) ∈𝐸
𝐹
𝑠,𝑗,𝑛,(K−⌈ 𝛼𝑗,𝑛

𝜏
⌉) = R𝑠,𝑛,K

B Modeling limited buffers

In the MILP. To model limited buffers in the MILP we
need to change the buffer constraints to track which chunks
to remove from the buffer and in which epoch. Hence, we
introduce a new variable 𝑋𝑠,𝑛,𝑘,𝑐 which encodes whether we
should remove chunk 𝑐 from node 𝑠 from the buffer at node 𝑛
in epoch 𝑘 . The buffer constraints become:

Buffer constraints
(
𝑠, 𝑛, 𝑘, 𝑐) ≜

𝐵𝑠,𝑛,𝑘,𝑐 = 𝐵𝑠,𝑛,𝑘−1,𝑐 − 𝑋𝑠,𝑛,𝑘−1,𝑐 +
∑︁

∀ 𝑗 | (𝑗,𝑛) ∈𝐸
𝐹𝑠,𝑗,𝑛,𝑘−⌈𝛿 𝑗𝑛 ⌉−1,𝑐 .

To enforce the limit on the buffer size, we add the con-
straint: ∑︁

𝑠,𝑐

𝐵𝑠,𝑛,𝑘,𝑐 ≤ L ∀𝑛 ∈ 𝑁,∀𝑘 ∈ 𝐾,

where L is the limit on the buffer size. We impose no limit
on the auxiliary variable𝑋𝑠,𝑛,𝑘−1,𝑐 as the algorithm can choose
to re-buffer a chunk at a node at any point in time and again
remove it later.
In the LP. The LP removes from the buffer what it sends
out on a link. Hence to use limited buffers we only have to
impose an upper bound on the sum of the buffer variables at
a node:

∑︁
𝑠

𝐵𝑠,𝑛,𝑘 ≤ L ∀𝑛 ∈ 𝑁,∀𝑘 ∈ 𝐾

C Modeling legacy switches
For switches that don’t support copy, we use an approach
similar to TACCL’s hyper-edges. We remove the switch from
the topology and replace it with direct links between all pairs
of GPUs that were connected through the switch. We now
need to account for the capacity to and from the switch: this
translates to a upper bound on the number of hyper-edges we
can use simultaneously in each epoch.

We augment our notation with the variables in Table 5. We
need to add a constraint to the problem that enforces we can
only use a subset of the hyper-edges: the minimum of the
number of edges that come into the switch and go out of it.
This constraint is as follows:∑︁
∀𝑛∈𝑁,∀𝑐∈𝐶,∀(𝑖, 𝑗) ∈Ω (𝑠)

𝐹𝑛,𝑖, 𝑗,𝑘,𝑐 ≤ min(|{(𝑠, 𝑥) ∈ 𝐸}|, |{(𝑦, 𝑠) ∈ 𝐸}|)

∀𝑘 ∈ 𝐾,∀𝑠 ∈ 𝑆

Each node 𝑖 can only send (receive) traffic on one of its
outgoing (incoming) hyper-edges:

∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆
∑︁

∀𝑛∈𝑁,∀𝑐∈𝐶,∀(𝑖, 𝑗) ∈Ω (𝑠)
𝐹𝑛,𝑖, 𝑗,𝑘,𝑐 ≤ 1

∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑁,∀𝑠 ∈ 𝑆
∑︁

∀𝑛∈𝑁,∀𝑐∈𝐶,∀(𝑗,𝑖) ∈Ω (𝑠)
𝐹𝑛,𝑗,𝑖,𝑘,𝑐 ≤ 1.

We only need to use this model in the general MILP form
to ensure the solution can scale — the LP model already
assumes none of the nodes copy traffic.

D The 𝐴∗ technique
In the 𝐴∗ based approach we split the problem into multiple
time partitions (or rounds). Our goal in each round is to get
the chunks closer to the destination. We solve each of these
rounds sequentially until we satisfy all the demands.

The delay on each link (i.e., 𝛼𝑖 𝑗) means some chunks we
send on link (𝑖, 𝑗) in a particular round may arrive at node 𝑗 in
a subsequent round. We use the set𝐾 ′ to denote all subsequent
rounds and 𝑄𝑠,𝑐,𝑖,𝑘 ′,𝑟 to denote the chunks that arrive in these
rounds to account for this (Figure 10). To keep things simple,
we choose to set the number of epochs in a round in a way that
ensures chunks are only delayed by a single round at most.
This means the total duration of the round is greater than the
largest link delay. However, users can choose to use shorter
chunks — they will have to maintain more state between
rounds in that case.

To encode 𝐴∗ we maintain most constraints from the MILP
formulation but need to modify the objective function and
the buffer constraints to account for chunks arriving in future

14

Notation Description
Γ The function to get non-switch set of edges from the set of edges (Γ : 𝐸 → 𝐸′). Therefore, 𝐸′ ⊆ 2𝑁−𝑆×𝑁−𝑆 and

(𝑖, 𝑗) ∈ 𝐸′ =⇒ (𝑖, 𝑗) ∈ 𝐸 ∧ 𝑖, 𝑗 ∉ 𝑆.
Ω The function from a switch node to the set of direct-connect edges (Ω : 𝑆 → 2𝑁−𝑆×𝑁−𝑆). Ω(𝑠) = {(𝑖, 𝑗) | (𝑖, 𝑠) ∈

𝐸 ∧ (𝑠, 𝑗) ∈ 𝐸 ∧ (𝑖, 𝑗) ∉ 𝐸}
𝐿 The set of edges in the transformed graph (𝐿 = Γ(𝐸) ∪⋃𝑠∈𝑆 Ω(𝑠)).

Table 5: Additional notation we need to model legacy switches.

Variable Description
𝑅 The set of rounds (𝑅 = {0, 1, 2, . . . R})
𝐾 The set of epochs in a round (𝐾 = {0, 1, 2, . . . , K}). The number of epochs in a round is constant and does not

change with the round.
𝐾 ′ The set of future epochs relevant for a round (𝐾 ′ = {0, 1, 2, . . . ,max∀(𝑖, 𝑗) ∈𝐸 ⌈

𝛼𝑖,𝑗

𝜏
⌉})

𝐷 The demand function (𝑁 × 𝑁 ×𝐶 → {0, 1}) where 𝐷𝑠,𝑑,𝑐,𝑟 represents whether destination 𝑑 wants chunk with id 𝑐
from node 𝑠 at the start of round 𝑟

𝐹𝑠,𝑐,𝑖, 𝑗,𝑘,𝑟 (boolean) whether chunk 𝑐 of source 𝑠 is going over link (𝑖, 𝑗) ∈ 𝐸 at epoch 𝑘 in round 𝑟
𝐵𝑠,𝑐,𝑖,𝑘,𝑟 (boolean) whether chunk 𝑐 of source 𝑠 is in node 𝑖’s buffer at the start of epoch 𝑘 in round 𝑟
𝑄𝑠,𝑐,𝑖,𝑘,𝑟 (boolean) whether chunk 𝑐 of source 𝑠 is in node 𝑖’s buffer at the start of future epoch 𝑘 ′ in round 𝑟 .
R𝑠,𝑐,𝑑,𝑘,𝑟 whether chunk 𝑐 of source 𝑠 is delivered to node 𝑑 by the end of epoch 𝑘in round 𝑟

Table 6: New variables for the 𝐴∗ technique.

0 1 2 · · · K 0 · · · max𝐾 ′

0 · · · · · · K 0 · · · max𝐾 ′
Round 𝑟

Round 𝑟 + 1

Epochs in a round Future epochs for a round

Figure 10: 𝐴∗ time progression between rounds
rounds. For switches, we need to modify the flow conservation
constraints as they do not have enough memory for buffering.
Look ahead constraints. To account for chunks that will
arrive in the subsequent epoch we need to maintain additional
state. For none switch nodes, if the chunk arrives in the first
epoch of the next round (𝑘 ′ = 0) we have:

𝑄𝑠,𝑛,𝑐,0,𝑟 =

𝐵𝑠,𝑛,𝑐,K,𝑟 +
∑︁

∀ 𝑗 :(𝑗,𝑛) ∈𝐸
𝐹
𝑠,𝑗,𝑛,𝑐,K−⌈ 𝛼𝑗,𝑛

𝜏
⌉,𝑟

∀𝑠, 𝑛 ∈ 𝑁 : 𝑛 ∉ 𝑆,∀𝑐 ∈ 𝐶
and for all later arrivals we have:

𝑄𝑠,𝑛,𝑐,𝑘 ′,𝑟 =

𝑄𝑠,𝑛,𝑐,𝑘 ′−1,𝑟 +
∑︁

∀ 𝑗 :(𝑗,𝑛) ∈𝐸∧(𝑘 ′−⌈ 𝛼𝑗,𝑛

𝜏
⌉)<=0

𝐹
𝑠,𝑗,𝑛,𝑐,K+𝑘 ′−⌈ 𝛼𝑗,𝑛

𝜏
⌉,𝑟

∀𝑠, 𝑛 ∈ 𝑁 : 𝑛 ∉ 𝑆,∀𝑐 ∈ 𝐶,∀𝑘 ′ ∈ 𝐾 ′ : 𝑘 ′ > 0.

These equations allow us to store in the variables 𝑄 what
chunks are arriving in the next round. Notice how we also
account for buffers by 𝐵𝑠,𝑛,𝑐,K,𝑟 in 𝑘 ′ = 0 and by𝑄𝑠,𝑛,𝑐,𝑘 ′−1,𝑟 for
the 𝑘 ′ > 0 case. Since the switches do not have large enough
buffers we use the following:

𝑄𝑠,𝑛,𝑐,𝑘,𝑟 =∑︁
∀ 𝑗 :(𝑗,𝑛) ∈𝐸∧(𝑘 ′−⌈ 𝛼𝑗,𝑛

𝜏
⌉)<=0

𝐹
𝑠,𝑗,𝑛,𝑐,K+𝑘 ′−⌈ 𝛼𝑗,𝑛

𝜏
⌉,𝑟

∀𝑠, 𝑛 ∈ 𝑁 : 𝑛 ∈ 𝑆,∀𝑐 ∈ 𝐶,∀𝑘 ′ ∈ 𝐾 ′ .
All that we have to do now is to set the buffers at the

beginning of each round 𝑟 > 0 to 𝑄 (we exclude 𝑟 = 0 since
there is no prior round, and we can use the same initialization
that we had earlier):

𝐵𝑠,𝑛,𝑐,0,𝑟 = 𝑄𝑠,𝑛,𝑐,0,𝑟−1

∀𝑠, 𝑛 ∈ 𝑁 : 𝑠 ≠ 𝑛 ∧ 𝑛 ∉ 𝑆,∀𝑐 ∈ 𝐶, 𝑟 > 0

For 𝑘 > 0, if 𝑄𝑠,𝑛,𝑐,𝑘−1,𝑟−1 = 0 and 𝑟 > 0, 𝑘 <= max𝐾 ′ we
have:

∀𝑠, 𝑛 ∈ 𝑁 : 𝑛 ∉ 𝑆,∀𝑐 ∈ 𝐶,∀𝑘 ∈ 𝐾 : 𝑘 > 0
𝐵𝑠,𝑛,𝑐,𝑘,𝑟 =

𝐵𝑠,𝑛,𝑐,𝑘−1,𝑟 +
∑︁

∀ 𝑗 :(𝑗,𝑛) ∈𝐸
𝐹
𝑠,𝑗,𝑛,𝑐,𝑘−⌈ 𝛼𝑗,𝑛

𝜏
⌉−1,𝑟 +𝑄𝑠,𝑛,𝑐,𝑘,𝑟−1

otherwise:

∀𝑠, 𝑛 ∈ 𝑁 : 𝑛 ∉ 𝑆,∀𝑐 ∈ 𝐶,∀𝑘 ∈ 𝐾 : 𝑘 > 0
𝐵𝑠,𝑛,𝑐,𝑘,𝑟 =

𝐵𝑠,𝑛,𝑐,𝑘−1 +
∑︁

∀ 𝑗 :(𝑗,𝑛) ∈𝐸
𝐹
𝑠,𝑗,𝑛,𝑐,𝑘−⌈ 𝛼𝑗,𝑛

𝜏
⌉−1

15

Specifically, we are adding to the buffer what is arriving
from the previous round. The two cases are there to ensure
we account for each arrival only once for non-switch nodes.
The equations are similar for switches:

∀𝑠, 𝑛 ∈ 𝑁 : 𝑛 ∈ 𝑆,∀𝑘 ∈ 𝐾 : 𝑘 > 0,∀𝑐 ∈ 𝐶
max

∀ 𝑗 :(𝑛,𝑗) ∈𝐸
𝐹𝑠,𝑛,𝑗,𝑐,𝑘,𝑟 ≤{∑

∀ 𝑗 :(𝑗,𝑛) ∈𝐸 𝐹𝑠,𝑗,𝑛,𝑐,+𝑘−⌈ 𝛼𝑗,𝑛

𝜏
⌉−1 +𝑄𝑠,𝑛,𝑐,𝑘,𝑟−1 𝑟 > 0, 𝑘 <= max𝐾 ′∑

∀ 𝑗 :(𝑗,𝑛) ∈𝐸 𝐹𝑠,𝑗,𝑛,𝑐,+𝑘−⌈ 𝛼𝑗,𝑛

𝜏
⌉−1 otherwise

but since switches don’t buffer chunks we incorporate them
into the flow conservation constraints.
The objective. We now need to motivate the optimization in
each round to get the chunks closer to the destination (while
making it even more profitable to satisfy the demand fully).
So first, we need to automatically compute this additional
payoff. To do this, we add logical edges to the graph that
allow nodes to form a clique. We assign a weight to each
of these edges which we calculate using the Floyd Warshall
algorithm [15] and the values for 𝛼𝑖 𝑗 . The chunks we send
in this epoch that don’t contribute to satisfying a demand are
stored in our 𝑄 variables. We now introduce a new variable:
𝑃𝑠,𝑑,𝑘 ′,𝑟 — the total number of chunks coming from source
𝑠 and going towards destination 𝑑 that are currently on their
way towards the destination. We have:

𝑃𝑠,𝑑,𝑘 ′,𝑟 ≤
∑︁

∀𝑛∈𝑁,∀𝑐∈𝐶 :𝐷𝑛,𝑑,𝑐,𝑟=1
𝑄𝑛,𝑠,𝑐,𝑘 ′,𝑟 ∀𝑘 ′ ∈ 𝐾 ′,∀𝑠, 𝑑 ∈ 𝑁∑︁

∀𝑠∈𝑁
𝑃𝑠,𝑑,𝑘 ′,𝑟 =

∑︁
∀𝑠∈𝑁,∀𝑐∈𝐶

𝐷𝑠,𝑑,𝑐,𝑟 ∀𝑘 ′ ∈ 𝐾 ′,∀𝑑 ∈ 𝑁

we also modify the demands from round to round to remove
the demands we have already satisfied. For 𝑟 > 0 we have:

∀𝑠, 𝑑 ∈ 𝑁,∀𝑐 ∈ 𝐶

𝐷𝑠,𝑑,𝑐,𝑟 =

{0 𝐷𝑠,𝑑,𝑐,𝑟−1 = 1, 𝑄𝑠,𝑑,𝑐,max𝐾 ′,𝑟−1 = 1
𝐷𝑠,𝑑,𝑐,𝑟−1 otherwise

Given these new values of 𝐷 and 𝑃 we can now add the
following to our objective:

Distance Objective(𝑟) =∑︁
∀𝑘 ′∈𝐾 ′,∀𝑠,𝑑∈𝑁 :𝑠≠𝑑

𝛾

(𝑘 ′ + 1) (1 + 𝐹𝑊𝑠,𝑑)
𝑃𝑠,𝑑,𝑘 ′,𝑟+∑︁

∀𝑘 ′∈𝐾 ′,∀𝑠,𝑑∈𝑁 :𝑠=𝑑

1
(𝑘 ′ + 1) 𝑃𝑠,𝑑,𝑘

′,𝑟

where the second term ensures having the chunk at the desti-
nation gives more payoff to the optimization (𝛾 < 1).

E Number of epochs
We provide a simple algorithm for finding the number of
epochs to run the optimization with. This algorithm has no
bearing on the optimality of the solution as the optimization
automatically identifies if less epochs are sufficient.

Algorithm 1: This algorithm identifies the number
of epochs we need to run the optimization with. We
use the resulting 𝑛𝑒 to instantiate the general optimiza-
tion — this is an upper bound on the number of epochs
we need, and the optimization can automatically dis-
cover if a smaller number of epochs is sufficient.

Input: D. The demand matrix.
Input: 𝐺 (𝑁, 𝐸). The topology.
Input: 𝜏𝑜𝑝𝑡
Input: 𝛼𝑖 𝑗 . The latency cost of each link (𝑖, 𝑗) ∈ 𝐸.
Input: 𝐶𝑖 𝑗 . The capacity of each link (𝑖, 𝑗) ∈ 𝐸.
Input: 𝐶𝜏 . A set of candidate completion times.
Output: 𝑛𝑒 . The upper bound on the number of

epochs we need.
1 for total_time ∈ 𝐶𝜏 do
2 for 𝑛𝑒 ∈ {4, 8, 12} do
3 𝜏 ← total_time

𝑛𝑒

4 𝑂𝑝𝑡, status←
general_form(D, 𝜏, 𝛼,𝐶, 𝑛𝑒 ,𝐺 (𝑁, 𝐸))

5 if status = feasible then
6 feasible_time← total_time
7 break
8 end
9 end

10 end
11 𝑛𝑒 ← feasible_time

𝜏𝑜𝑝𝑡

12 return 𝑛𝑒

F Epoch duration set based on the fastest link
To set the epoch duration based on the speed of the fastest link
in the LP we do not need to change anything: the LP supports
fractional chunks and handles this automatically.The MILP
only allows us to send whole chunks — if we set the epoch
duration to be lower than the transmission time of the chunk
on the slowest link we can never use that link: we need to
modify both the flow conservation constraint and the capacity
constraints to address this issue.

We can model the flow conservation constraints similar to
how we model 𝛼 : we account for how many epochs it takes a
chunk to traverse the slowest link and change the value of 𝛿𝑖 𝑗
accordingly.

To model the capacity constraint, we need to ensure the
number of chunks on a link never exceed its capacity. We first

16

Collective (# chunks, #epochs) SCCL solver time (s) TE-CCL solver time (s) Diff in transfer time (%)
ALLGATHER (1, 2) 0.3 0.09 0

(2, 3) 0.7 0.07 0
(3, 4) 1.8 0.19 0
(4, 5) 4.1 1.45 0
(5, 6) 11.2 8.96 0
(6, 7) 27.7 50.57 (11s) 0

ALLTOALL (1, 3) 8.8 0.11 33%
(3, 8) NA 0.18 NA
(8, 30) NA 1.88 NA

Table 7: Comparing TE-CCL’s runtime to SCCL. We use 25 KB chunks for these experiments and 𝛼 = 0. The difference
in transfer time is 100(𝑆𝐶𝐶𝐿−𝑇𝐸𝐶𝐶𝐿)

𝑆𝐶𝐶𝐿
. For all-to-all we use our notation — the number of chunks represents the number

of chunks the sender wants to send to each destination (SCCL’s notation uses the number of chunks to mean the total
number of chunks the source needs to send).

calculate how many epochs we need to transmit the chunk
over a link (𝜅) and modify the capacity constraints to:

Capacity Constraint
(
𝑖, 𝑗, 𝑘

)
≜∑︁

𝑘−𝜅≤𝑘 ′≤𝑘

∑︁
𝑠∈𝑁

∑︁
𝑐∈𝐶

𝐹𝑠,𝑖, 𝑗,𝑘 ′,𝑐 ≤ 𝜅𝑇𝑖 𝑗𝜏

Notice this capacity constraint ensures the same behavior
we had when we used the larger epoch duration.

G Comparing to SCCL instance
SCCL has two modes: the least-steps and instance.
We compare TE-CCL to SCCL instance in Table 7.

H Details of each topology
We use DGX1, DGX2, NDv2, and internal topologies 1 and 2
for our evaluation. Figure 11 and Figure 12 shows the topolo-
gies, capacity and 𝛼 we used for NDv2 and DGX2 respectively.
DGX1 has 8 GPUs and is similar to a single chassis NDv2.
Internal topologies 1 and 2 are proprietary, and we cannot
report numbers for those.

17

50 GBps with 𝛼 = 0.7𝜇𝑠 in each direction
25 GBps with 𝛼 = 0.7𝜇𝑠 in each direction
12.5 GBps with 𝛼 = 1.3𝜇𝑠

Figure 11: Four chassis NDv2 topology used by TE-CCL. Each chassis has 8 GPUs connected with 50 GBps and 25 GBps
links. TACCL replaces the switch by connecting GPU 0 of a chassis to GPU 1 of all other chassis and constraints that only
one of the three links can be used at a given time.

18

...
...

...
...

12
5

G
B

ps
w

ith
𝛼
=
0.
35
𝜇
𝑠

in
ea

ch
di

re
ct

io
n

12
.5

G
B

ps
w

ith
𝛼
=
2.
6𝜇
𝑠

Fi
gu

re
12

:T
w

o
ch

as
si

sD
G

X
2

to
po

lo
gy

us
ed

by
T

E
-C

C
L

.E
ac

h
ch

as
si

sh
as

16
G

PU
s(
8

G
PU

sa
re

us
ed

fo
r

se
nd

in
g

ch
un

ks
to

an
ot

he
r

ch
as

si
s,

an
d
8

G
PU

sa
re

us
ed

fo
r

re
ce

iv
in

g
ch

un
ks

fr
om

th
e

ot
he

r
ch

as
si

s)
.E

ac
h

da
sh

ed
lin

k
is
12
.5

G
B

ps
w

ith
𝛼
=
2.
6𝜇
𝑠,

an
d

ea
ch

th
ic

k
st

ra
ig

ht
lin

k
is
12
5

G
B

ps
w

ith
𝛼
=
0.
35
𝜇
𝑠

in
ea

ch
di

re
ct

io
n.

TA
C

C
L

re
pl

ac
es

th
e

sw
itc

h
in

ea
ch

ch
as

si
s

an
d

co
nn

ec
ts

ea
ch

G
PU

in
a

ch
as

si
s

to
ev

er
y

ot
he

r
G

PU
,e

ff
ec

tiv
el

y
fo

rm
in

g
a

cl
iq

ue
an

d
us

es
its

u
c
-
m
i
n

st
ra

te
gy

to
m

in
im

iz
e

th
e

nu
m

be
r

of
ed

ge
su

se
d.

19

Table 8: Experimental results for TE-CCL and comparison to TACCL on NDv2 2 chassis topology.

Output

Buffer Size

ED

(𝜇s)

CT

(𝜇s)

ST

(s)

AB
(GB/s)

TACCL

CT (𝜇s)

TACCL

ST (s)

TACCL
AB (GB/s)

Improvement %

ED - Epoch Duration CT - Collective finish Time ST- Solver Time

AB - Algorithmic Bandwidth = output buffer size / collective time

NDv2 2 chassis ALLTOALL optimal epoch duration
1 GB 1250 320235.81 336.50 3.123 320049.4 1214.69 3.125 -0.058

256 MB 320 82000.00 307.33 3.122 81964.2 1217.56 3.123 -0.044
64 MB 80 20495.09 339.92 3.123 20532 1220.6 3.117 0.180
16 MB 20 5123.77 280.82 3.123 5164.4 1213.9 3.098 0.793
4 MB 5 1296.25 165.63 3.086 1324.2 1214.51 3.021 2.156
1 MB 1.25 325.28 189.47 3.074 359 1213.52 2.786 10.366

256 KB 0.32 85.52 218.50 2.993 115.72 1221.78 2.212 35.313
64 KB 0.08 23.30 161.99 2.747 50.34 860.88 1.271 116.052
16 KB 0.02 7.27 182.08 2.202 35.76 86.03 0.447 392.223
4 KB 0.02 4.64 69.58 0.862 32.16 31.14 0.125 592.134
1 KB 0.005 4.24 196.72 0.236 36.8 27.66 0.027 768.920

NDv2 2 chassis ALLTOALL max epoch duration
1 GB 5000 325000 14.82 3.077 320049.400 1214.692 3.125 -1.52

256 MB 1280.41 83226.63 14.36 3.076 81964.200 1217.557 3.123 -1.52
64 MB 320.10 20806.66 11.01 3.076 20532.000 1220.602 3.117 -1.32
16 MB 80.01 5200.42 9.96 3.077 5164.400 1213.903 3.098 -0.69
4 MB 20 1300.03 11.81 3.077 1324.200 1214.507 3.021 1.86
1 MB 5 340 10.85 2.941 359.000 1213.521 2.786 5.59

256 KB 1.28 88.32 9.97 2.899 115.720 1221.779 2.212 31.02
64 KB 0.32 24.32 10.46 2.632 50.340 860.875 1.271 106.99
16 KB 0.08 7.6 8.83 2.105 35.760 86.034 0.447 370.53
4 KB 0.02 4.5 20.90 0.889 32.115 31.139 0.125 613.67
1 KB 0.01 4.235 276.47 0.236 36.799 27.660 0.027 768.92

NDv2 2 chassis ALLGATHER optimal epoch duration
1 GB 1250 43750 7201.05 22.86 53766.70 7.01 18.60 22.90

256 MB 320 11200 7214.16 22.86 12494.60 6.56 20.49 11.56
64 MB 80 2800 7209.46 22.86 3133.20 8.27 20.43 11.90
16 MB 20 700 7208.70 22.86 - - - -
4 MB 5 190 152.60 21.05 216.50 8.37 18.48 13.95
1 MB 1.25 48.75 160.10 20.51 62.15 62.65 16.09 27.49

256 KB 0.32 14.72 59.55 17.39 25.26 11.17 10.13 71.60
64 KB 0.08 6.08 27.61 10.53 13.08 3.66 4.89 115.13

20

Table 8 continued from previous page
16 KB 0.02 4.44 18.80 3.60 12.68 6.34 1.26 185.59
4 KB 0.02 4.24 12.26 0.94 11.85 4.30 0.34 179.48
1 KB 0.005 4.135 50.28 0.24 10.16 3.02 0.1 145.68

NDv2 2 chassis ALLGATHER early stop at 30% using optimal epoch duration
1 GB 1250 47500 2.66 21.05 53766.70 7.01 18.60 13.19

256 MB 320 12163.89 2.37 21.05 12494.60 6.56 20.49 2.72
64 MB 80 3920.31 2.45 16.33 3133.20 8.27 20.43 -20.08
16 MB 20 980.02 2.42 16.33 - - - -
4 MB 5 240 2.40 16.67 216.50 8.37 18.48 -9.79
1 MB 1.25 63.75 4.32 15.69 62.15 62.65 16.09 -2.51

256 KB 0.32 16.96 2.83 15.09 25.26 11.17 10.13 48.94
64 KB 0.08 6.32 3.94 10.13 13.08 3.66 4.89 106.96
16 KB 0.02 4.44 12.98 3.60 12.68 6.34 1.26 185.59
4 KB 0.02 4.24 10.17 0.94 11.85 4.30 0.34 179.48
1 KB 0.005 4.135 42.94 0.24 10.16 3.02 0.1 145.68

NDv2 2 Chassis ALLGATHER max epoch duration
1 GB 5000 50000 0.94 20 53766.70 7.01 18.60 7.53

256 MB 1280.41 12804.10 0.77 19.99 12494.60 6.56 20.49 -2.42
64 MB 320.10 3201.02 0.78 19.99 3133.20 8.27 20.43 -2.12
16 MB 80.01 800.06 0.77 20 - - - -
4 MB 20 200 0.77 20 216.50 8.37 18.48 8.25
1 MB 5 70 1.04 14.29 62.15 62.65 16.09 -11.21

256 KB 1.28 19.20 1.09 13.33 25.26 11.17 10.13 31.56
64 KB 0.32 7.68 1.74 8.33 13.08 3.66 4.89 70.31
16 KB 0.08 4.80 3.35 3.33 12.68 6.34 1.26 164.17
4 KB 0.02 4.24 21.56 0.94 11.85 4.30 0.34 179.48
1 KB 0.01 4.14 89.07 0.24 10.16 3.02 0.1 145.68

21

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The need for fast collective scheduling
	2.2 Background on network flow solutions

	3 Solution
	3.1 The general model

	4 Scaling
	4.1 Scaling by converting to a linear program
	4.2 Scaling using the A* technique

	5 Important Considerations
	6 Evaluation
	6.1 Comparison to SCCL and TACCL
	6.2 Scale
	6.3 Microbenchmarks

	7 Related work
	8 Conclusion
	References
	A Initialization and termination constraints
	B Modeling limited buffers
	C Modeling legacy switches
	D The A* technique
	E Number of epochs
	F Epoch duration set based on the fastest link
	G Comparing to SCCL instance
	H Details of each topology

